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Background: Sickle cell disease causes significant morbidity and mortality and affects the economic and healthcare status of

many countries. Yet historically, the disease has not had commensurate outlays of funds that have been aimed at research and

development of drugs and treatment procedures for other diseases.

Methods: This review examines several treatment modalities and new drugs developed since the late 1990s that have been

used to improve outcomes for patients with sickle cell disease.

Results: Targeted therapies based upon the pathophysiologic mechanisms of sickle cell disease that result in organ dysfunction

and painful episodes include hydroxyurea, L-glutamine, crizanlizumab, and other drugs that are currently on the market or are

on the verge of becoming available. These agents have the potential to improve survival and quality of life for individuals with

sickle cell disease. Also discussed is stem cell transplantation that, to date, is the only curative approach for this disease, as well

as the current status of gene therapy.

Conclusion: These examples demonstrate how the current knowledge of sickle cell disease pathophysiology and treatment

approaches intersect. Although interest in sickle cell research has blossomed, many more clinical trials need to be initiated

and subjected to more strenuous examination and analysis than have been used in the past.
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INTRODUCTION
In 1910, sickle cell disease burst onto the Western medical

scene as a “strange” or, as Herrick termed it, a “new, un-
known disease.”1 Physicians were intrigued by the sickled
appearance of the red cells in this disorder, and case reports
and analytical papers detailing the clinical features of this dis-
order appeared to almost always involve people of color.2-6

The disease then became known as a “black disease.”6-8

Not until 1949, however, was the molecular nature of sickle
cell discovered.9 In 1958, Ingram discovered the genetic
basis of the disease and demonstrated that the disease orig-
inated from the substitution of a valine for glutamic acid at the
sixth amino acid position of the hemoglobin beta chain.10

This amino acid substitution, now known to be the result of
a single point mutation of the hemoglobin gene, produces
profound changes in the behavior and conformation of the
hemoglobin molecule in individuals affected by the disease.11

In 1927, Hahn and Gillespie had reported on the mecha-
nism of sickle formation, observing that the sickle hemoglo-
bin in its deoxygenated state assumed the characteristic
shape, the sickle, that gives the disorder its name.12 Cells
containing deoxygenated hemoglobin not only formed this
rigid shape but also were dehydrated,13 had abnormal cell
surface and distinct migratory characteristics, were sticky
and prone to adhesion, and had abnormal rheologic proper-
ties.14,15 Clinically, not only did patients with sickle cell dis-

ease experience repeated painful episodes (crises), but
because of recurrent episodes of vaso-occlusion, they ulti-
mately suffered chronic organ damage. Physicians noted a
paucity of individuals who survived into their adult years.6

Sickle cell disease, one of the most common inherited dis-
eases worldwide, is now understood to be a disorder of glob-
al importance and economic as well as clinical significance.
Those affected by the disease live in areas of sub-Saharan
Africa, the Middle East, India, the Caribbean, South and Cen-
tral America, some countries along the Mediterranean Sea,
as well as in the United States and Europe.16 The disease
has, at times, through forced and unforced migration, been
introduced to areas in which it was not endemic.17 In the
United States, 80,000-100,000 individuals are affected by
the disorder; worldwide, more than 300,000 children are es-
timated to be born annually with sickle cell disease.18-20 This
number includes approximately 3,000 children born with the
disease each year in the United States.18

Since the 1980s, novel approaches for the treatment of
sickle cell disease have included the introduction of penicil-
lin prophylaxis for children with sickle cell,21 the institution of
newborn screening programs,22 and the use of transcranial
Doppler screening for detection of cerebral vasculopathy
and stroke prevention.23 Hematologists have long recog-
nized the need for better treatments of sickle cell. Optimally,
a treatment approach was needed that did not just address
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pain or treat and prevent sequelae of the disease (eg, suscep-
tibility to infection from asplenia). What was needed instead
was a treatment approach that worked by undercutting the
pathophysiology of the disease. Research efforts previously
concentrated on understanding the pathogenesis of the dis-
ease rather than on providing greater relief for the patients
having the disorder. Progress in arriving at satisfactory treat-
ment of individuals with sickle cell has often seemed to be
a slow, halting process. Also, funding for research of sickle
cell disease lagged behind that of other genetic diseases,
fueling a suspicion that racial bias prevented significant out-
lays of moneys for study of the disorder.24-27 The innovations
enumerated above did result in stepwise improvements in
survival, so the median life expectancy for those with homozy-
gous disease is now into the fourth and fifth decades.28

Beyond hydroxyurea, which was introduced into clinical
practice in the 1980s for adults,29,30 few new drugs have
been investigated or placed on the market for the treatment
of the disorder until recently. This review investigates areas
of potential intervention and promise that have evolved
since the late 1990s.
Notably, 2017-2018 have been heralded as the most pro-

ductive years, yielding novel initiatives aimed at this disease.
In 2017, the American Society of Hematology (ASH) intro-
duced its Advocacy Efforts Related to Sickle Cell Disease
and Sickle Cell Trait.31 In February 2018, United States Sen-
ators Tim Scott and Cory Booker advanced the Sickle Cell
Disease Surveillance, Prevention, and Treatment Act of
2018.32 ASH’s efforts signaled a commitment to ensuring
that individuals with sickle cell disease have access to
care, as well as a concerted effort to train and educate phy-
sicians about the disease. ASH would also work with federal
agencies such as the National Institutes of Health to expand,
assess, and prioritize research of the disorder. The legisla-
tion introduced by the senators aims to “improve under-
standing of health care utilization by individuals with sickle
cell disease and to establish cost-effective practices to im-
prove and extend the lives of patients.”32 The legislation, if
passed, would award grants to enable a better understand-
ing of the prevalence and distribution of sickle cell disease.
The bill is still being considered by the Senate. Those who
work in the field of sickle cell disease viewed these two ini-
tiatives as an indication of interest in the disorder by the gen-
eral community and a promise of much-needed funding for
the study of a hitherto neglected disease. Because many
practitioners, patients, and their families have long felt that
the lack of funding or interest in sickle cell disease was an
indication of neglect from the general medical community,
these initiatives were heartening.25,33-36

PATHOPHYSIOLOGY OF SICKLE CELL DISEASE
The Figure depicts some of the pathophysiologic compo-

nents of the disorder in simplified form. New insights into the
pathophysiology of the disease are summarized in several
comprehensive reviews.37-41 No longer valid is the simplistic
explanation of sickle cells being solely responsible for caus-
ing vascular blockage or vaso-occlusion once red cells
assume the pathognomonic sickle cell shape following ex-
posure of the cell to deoxygenation. While vaso-occlusion
is central to the understanding of the disease and can
cause local hypoxemia with ensuing direct tissue injury
and inflammation, the single gene mutation seen in sickle

cell disease leads to complex physiologic changes. These
changes result in the protean clinical manifestations of the
disease. We now recognize sickle cell disease as a condi-
tion not only characterized by vaso-occlusion, anemia, and
hemolysis but also one with heightened inflammation, hy-
percoagulability, increased oxidative stress, and defective
arginine metabolism. Sickle cell disease is a vasculopathy
and also features the presence of multiple nutritional and mi-
cronutrient deficiencies that adversely affect the patient.42

Upon deoxygenation, the sickle hemoglobin is insoluble
and undergoes polymerization and aggregation of the poly-
mers into tubulin fibers that then produce sickling.43,44 Be-
cause of their rigid shape, the cells are prone to being
trapped in the microcirculation, while tissues downstream
of this blockage are deprived of blood flow and oxygen
and suffer ischemic damage or death. This blood flow dep-
rivation in turn leads to tissue necrosis or reperfusion injury.
These sickle cells are also prone to dehydration because

of abnormalities in the Gardos channel.13,45,46 These cells
are characterized by abnormal activation of intracellular sig-
naling pathways and have less nitric oxide47 and adenosine
triphosphate content.48 These cells also have less antioxi-
dant capacity.49,50 As a result, many of the cellular compo-
nents may have oxidative damage.51 Oxidative damage to
the cellular membrane proteins and aggregation of proteins
along the inner surface of plasma membranes can lead to
intracellular abnormalities at the red cell surface; such
changes lead ultimately to increased phosphatidylserine ex-
posure and the formation of microparticles that allow pro-
coagulant activity by the red cell itself.52

With hemolysis, free hemoglobin is released into the plas-
ma, acting as a scavenger of nitric oxide.53,54 Because
arginase-1 activity, necessary for production of nitric oxide,
is lower in the sickle cell than in the normal red cell, nitric
oxide cannot readily be made de novo, especially in individ-
uals who tend to hemolyze at high rates. Another result of
hemolysis is the formation of reactive oxygen species by re-
actions involving free hemoglobin.55

In addition, dysregulation of microRNA occurs in the sick-
le cell, small noncoding RNA molecules function to silence
RNA, and posttranscriptional regulation of gene expression
occurs.56 Hence, gene expression is abnormal during eryth-
ropoiesis.
The abnormal adhesive properties of the sickle erythro-

cyte can lead to activation of adhesion receptors, such as
those of the intercellular adhesion molecule-4.57 Similarly,
the glycoprotein basal cell adhesion molecule (Lutheran
blood group), a transmembrane adhesion molecule found
in the vascular endothelium, interacts with the unique inte-
grin alpha 4 beta 1 expressed on sickle cells, mediating their
adhesion to the endothelium.58,59 The result is abnormal in-
teractions between red cells, leukocytes, platelets, endo-
thelium, and extracellular matrix proteins. Such abnormal
cell-cell interactions lead to a steady process of adherent in-
teractions, driving endothelial cell expression of procoagu-
lant proteins. The mitogen-activated protein kinase ERK 1/2
and the upstream kinase responsible for its activation, MEK
1/2, are constitutively activated in sickle red cells, leading
to increased adhesion.60-62 The selectins E-selectin and
P-selectin are upregulated in sickle cell disease and also
mediate adhesion, with the degree of red cell adhesion cor-
relating with greater severity of disease.63
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In addition to these changes, the cell containing sickle he-
moglobin is stiffer than a normal red cell would be in circula-
tion.15,64-66 Such abnormal deformability persists even when
the cell has assumed an apparently normal ovoid shape. Mor-
phologically normal sickle hemoglobin-containing erythro-
cytes are just as adherent-prone as irreversibly sickled cells.
Inflammation is also key to the initiation of vaso-

occlusion.67,68 Even in steady state, leukocytes and platelets
are activated, and markers of inflammation are elevated. Mul-
tiple inflammatory cytokines, such as interleukin (IL)-10, IL-4,
macrophage-inflammatory protein (MIP-1α), and tumor necro-
sis factor alpha (TNF-α), are elevated even at baseline.69,70

The leukotriene synthetic enzyme 5-lipoxygenase activates
both monocytic and endothelial cells, leading to production
of leukotrienes that are increased in steady state to the extent
that elevated levels correlate with a higher painful event rate.70

Invariant natural killer T-cells are also activated and present
in increased numbers.71 As an example of their importance,
they may play a role in the pathogenesis of ischemia/reperfu-
sion injury in sickle cell disease.
All these changes show how the disorder is a complicated

patchwork of contributory pathologies that are fascinating
but make it difficult to create an all-encompassing therapeu-
tic strategy.

Figure. Schematic representation of the pathophysiology (in part) of sickle
cell anemia. A single gene mutation (GAG→GTG and CTC→CAC) results in a
defective hemoglobin that when exposed to deoxygenation (depicted in
the right half of the diagram) polymerizes (upper right of the diagram), re-
sulting in the formation of sickle cells. Vaso-occlusion can then occur. The
disorder is also characterized by abnormal adhesive properties of sickle
cells; peripheral blood mononuclear cells (depicted in light blue; shown
as the large cells under the sickle cells) and platelets (depicted in dark
blue; shown as the dark circular shapes on the mononuclear cells) adhere
to the sickled erythrocytes. This aggregate is labeled 1. The mononuclear
cells have receptors (eg, CD44 [labeled 3 and depicted in dark green on
the cell surface]) that bind to ligands, such as P-selectin (labeled 2 and
shown on the endothelial surface), that are upregulated. The sickle eryth-
rocytes can also adhere directly to the endothelium. Abnormal movement
or rolling and slowing of cells in the blood also can occur. These changes
result in endothelial damage. The sickled red cells also become dehydrated
as a result of abnormalities in the Gardos channel. Hemolysis contributes to
oxidative stress and dysregulation of arginine metabolism, both of which
lead to a decrease in nitric oxide (NO) that, in turn, contributes to the vas-
culopathy that characterizes sickle cell disease.
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TREATMENT OF SICKLE CELL DISEASE
Hemoglobin F Production
Hydroxyurea. Patients of Arab-Indian haplotype generally

manifest high hemoglobin F levels (approximately 20%)
and have a mild clinical phenotype of sickle cell disease.72,73

Likewise, patients who are compound heterozygotes for he-
reditary persistence of fetal hemoglobin (up to 30% hemo-
globin F) have few if any manifestations of the disorder.74

Therefore, the assumption seemed reasonable that inducing
hemoglobin F in individuals in which it had been turned off
might accrue considerable benefit to patients with sickle
cell disease.
Hydroxyurea induces the production of hemoglobin F. He-

moglobin F in turn reduces hemoglobin S polymerization
and subsequent sickling. For this reason, hydroxyurea has
been the standard of care for patients with sickle cell disease
since the late 1980s.28,29,75-78 Until 2008-2013, no other
drugs carried such promise or were on the horizon. While
the efficacy of hydroxyurea is principally attributable to its
ability to turn on production of hemoglobin F, other salutary
effects include its reduction of the expression of adhesion
molecules on red blood cells and the decrease in neutrophil,
monocyte, platelet, and reticulocyte numbers that may
translate into decreased blood viscosity, fewer deleterious
cell-cell interactions, and a reduction in hemolysis.76-78 The
drug has been quite effective in bringing about a reduction
in the number of vaso-occlusive pain or acute chest syn-
drome episodes, the number of hospitalizations, and the
number of transfusions required by patients.79,80 Most im-
portant, the demonstration of a definite survival advantage
for those taking the drug would seem to be a persuasive
finding for healthcare providers and patients and an induce-
ment to take it.80 However, as Brandow and Panepinto
noted in a discussion of hydroxyurea use in sickle cell dis-
ease, “true effectiveness [of any drug] is dependent upon
utilization in real clinical practice.”81 In one study they re-
viewed, only 75% of providers used hydroxyurea in their pa-
tients who had 3 or more painful episodes per year, and only
30% of individuals who might be eligible for the drug were
taking it.81 Not all barriers to the use of hydroxyurea are
known, but some that have been identified include fear of
side effects including teratogenesis, effects on fertility, and
the possibility of increased risk of malignancy.81,82

Hydroxyurea is recommended for patients with sickle cell
disease who meet the following criteria:83

• Patients who have ≥3 moderate to severe pain episodes
in a 12-month period

• Patients who have a history of stroke and a contraindica-
tion to chronic transfusions (as an alternative to receiving
no transfusion)

• Children who have a history of acute chest syndrome or
symptomatic anemia

• Infants and children 9 months of age or older who are
asymptomatic or have infrequent pain episodes

Interestingly, these recommendations were made for pedi-
atric usage even though no large, randomized trials have
been conducted with children. Current usage is based on ef-
ficacy studies performed in children that include a random-
ized, placebo-controlled crossover trial with a small number
of children and open-label single-arm studies.84-86 Because
the hydroxyurea arm showed a significant decline in pain cri-
ses, the use of hydroxyurea in children appeared to be vali-
dated and children could then be treated with this drug,
despite its not having US Food and Drug Administration
(FDA) approval for this patient population. Hydroxyurea has
been safe with minimal side effects and has resulted in a sig-
nificant decrease in mortality in both adults and children.
The primary reason for ineffectiveness with this drug

seems to be noncompliance, but some individuals genuinely
are nonresponders. Patient response is also variable. Rea-
sons for the lack of consistency and for the lack of response
are not known. Vascular and other changes associated with
the disorder that might presage major sickle-related compli-
cations may still occur despite the use of hydroxyurea and
despite any apparent beneficial effects of the drug.87 Further,
the drug can, over time, have a diminished ability to induce
hemoglobin F, perhaps because of marrow exhaustion.88

Data from 2007 suggest that polymorphisms in genes that
regulate hemoglobin F expression, metabolism of the drug,
and erythroid progenitor proliferation (individuals having
higher degrees of reticulocytosis seem to respond better to
hydroxyurea) may also be factors determining the respon-
siveness of an individual to hydroxyurea.89

The fact that not everyone will be a candidate for or re-
spond to hydroxyurea increases the exigency to explore
other approaches to the treatment of sickle cell, including
preventive measures. Efforts have been underway for
years to take advantage of the new understanding of the
pathophysiology of the disease. Therapeutic candidates
(Table) have included drugs that are aimed at (1) finding al-
ternative pathways for turning on hemoglobin F production;
(2) preventing cellular adhesion and aggregation; (3) alter-
ing blood flow dynamics in the vasculature; (4) preventing
hemoglobin S polymerization; (5) enhancing the hemoglo-
bin’s oxygen affinity; (6) decreasing inflammation; and (7)
targeting directly the genetic mutation of the sickle cell
gene. As noted, complete elimination of the mutant gene
is not required for clinical improvement to be seen because
diminution of hemoglobin S gene expression to 50% has
been demonstrated to be sufficient to allow a phenotype
similar to sickle trait.90

Butyric Acid and Butyrate (HQK-1001). Other drugs be-
sides hydroxyurea have been proposed that lead to an

Table. Treatments Targeting Specific Pathogenetic
Mechanisms of Sickle Cell Disease

Pathogenetic Mechanism Counteragent

P-selectin inhibition Crizanlizumab

Polymerization Voxelotor

Upregulation of fetal
hemoglobin production

Hydroxyurea
Butyrate
5-Azacytidine, Decitabine

Oxidative stress L-glutamine

Genetic mutation CRISPR/Cas 9 technology
and transplantation

Abnormal rheology Poloxamer 188

CRISPR/Cas 9, clustered regularly interspaced short palindromic re-
peats/CRISPR-associated protein 9.
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increase in hemoglobin F. One such drug is butyric acid, a
short chain fatty acid.91-93 Its mechanism of action is not
known. Although butyric acid showed early promise, formi-
dable drawbacks to its use included the large amounts re-
quired for effect and the necessity for the drug to be given
intravenously and in large volume for 4 days every 4
weeks. The inconvenience and the necessity for utilization
of a central venous catheter were impediments to its use in
patients.
An orally bioavailable form of butyrate, 2,2-

dimethylbutyrate (HQK-1001), has been studied. In a phase
1/2 trial of HQK-1001, 21 patients having sickle cell disease
completed the study.92 Increases in hemoglobin F >1.1%
above the baseline percentage were observed in 50% of sub-
jects receiving the higher escalating doses of 20 and 30mg/
kg/day. The study period was relatively brief, so the effect on
erythropoiesis was not analyzed. Also, as a phase 1/2 study,
the study’s purpose was not to assess effectiveness in ame-
liorating sickle cell disease symptomatology. In a phase 2
trial conducted by Reid and others, the drug was given in
a dose of 15mg/kg twice daily.93 The mean absolute in-
crease in hemoglobin F was 0.9% with no significant differ-
ence in mean changes of hemoglobin. Of note, the mean
annualized rate of pain crises for those receiving HQK-1001
was 3.5, whereas the rate for those receiving placebo was
1.7. Adverse effects included gastritis (the dose-limiting
side effect), nausea, headache, and fatigue. The study termi-
nated after a planned interim analysis, and the authors con-
cluded that “additional studies of HQK-1001 at this dose and
schedule are not recommended in [sickle cell disease].”93

Decitabine and 5-Azacytidine. The human gamma globin
gene is silenced in most individuals during early childhood
and through adulthood through epigenetic gene regulation,
signifying that modification of gene expression rather than
alteration of the genetic code is responsible for controlling
or suppressing gene expression levels. DNA methylation,
carried out by the enzyme DNA methyltransferase 1
(DNMT1), then enables the developmental switch from the
production of the gamma globin to the beta globin chain.94

Researchers have proposed that interference with or de-
pletion of DNMT1 might prevent the switchoff of hemoglobin
F production.95-100 The drug decitabine and its prodrug 5-
azacytidine have been found to deplete DNMT1 levels.101

In animals, 5-azacytidine produced increases in hemoglobin
F levels up to 20 times those produced by hydroxyurea,
even in animals that derived minimal benefit from hydroxy-
urea by being poor responders.101 In this study with the pri-
mary endpoint of hemoglobin F production, hemoglobin F
production increased in a dose-dependent fashion with the
use of decitabine, and the rate of pain crisis was lower in al-
most all groups studied.101 However, the drug has several
shortcomings, including poor bioavailability, negligible
solid tissue distribution, a very brief half-life, and formation
of uridine degradation products that could potentially
cause DNA damage and cytotoxicity. Teratogenesis and
carcinogenesis are real concerns.

Prevention of Oxidative Stress
L-Glutamine. In 2017, considerable excitement was gener-

ated by the announcement of the commercial availability of
L-glutamine (Endari), touted as the first new drug approved
by the FDA for treatment of sickle cell disease in 30

years.102,103 This agent’s use is based upon the fact that
the sickle red cell, because of decreased redox potential,
is more susceptible to oxidant stress or damage than a nor-
mal red cell. Sickle red cells absorb and utilize L-glutamine
to a far greater extent than normal red cells, having rates of
L-glutamine utilization that exceed de novo synthesis. Sup-
plementation with L-glutamine therefore leads to improved
transport and utilization of glutamine in the sickled erythro-
cyte and to a subsequent rise in the levels of the naturally
occurring redox agents nicotinamide adenine dinucleotide
and nicotinamide adenine dinucleotide hydrogenase. The
increase in redox agents in turn improves the cellular de-
fenses against oxidative stress.
In an open-label pilot clinical trial of the drug, all patients

achieved normalization of nicotinamide adenine dinucleotide
redox potential and a decrease in permanently sickled cells
in peripheral blood.104 Only 7 adult patients participated in
the trial, and no clinical benefit was seen. However, Niihara
and associates demonstrated in subsequent clinical trials
that all patients experienced normalization of their nicotin-
amide adenine dinucleotide redox potential and had a de-
crease in clinical symptoms when given L-glutamine.104,105

In a phase 3 study published in 2014 that included both
adults and children, the median cumulative hospital days
were lowered by 41%.105 The frequency of vaso-occlusive
episodes was decreased by 25%, and the incidence of
acute chest syndrome decreased by more than 50%.105

Side effects were negligible. However, the rate of withdrawal
from the study was unexpectedly high. Patients receiving the
drug were given an oral dose of 0.3g/kg twice daily for 48
weeks, and 62% withdrew in the placebo group vs 49% in
the medication arm. Such a large withdrawal of subjects af-
fected the power of analysis for the study and possibly was
responsible for the failure of the drug effect to remain statis-
tically significant for the duration of the study. For these rea-
sons, the data have been critically appraised by others as
lacking in quality.106 Another criticism is that the administra-
tion of the drug is “onerous”; therefore, long-term compliance
might be difficult to maintain since the patient would have “to
take a lot of it and mix it up and drink it down two to three
times a day.”106 Another concern is whether insurance will
cover the cost of the drug because Medicaid and other insur-
ance providers have been reluctant to cover supplements of
any type.106,107 The drug is expensive. A 5g packet of L-
glutamine costs $580-$620 and must be given two or three
times daily.107 While provisions are being made for patient
assistance and third-party coverage, the cost is considerable.
Last, efficacy is only seen after weeks or months.

Prevention of Adhesion
Crizanlizumab. As noted previously, adhesion of platelets

to red cells, monocytes, and neutrophils is an integral com-
ponent of the pathogenesis of sickle cell disease.108,109 The
degree of red cell adhesion correlates with the severity of
disease. Selectins, especially P-selectin which is upregu-
lated in sickle cell disease, are responsible for initiation of
the static adhesion of the sickle red cells to the vessel sur-
face and the ensuing vascular obstruction that is seen in cri-
sis or inflammation.110

For this reason, effort has been devoted to the develop-
ment of methods to block P-selectin activity. Crizanlizumab,
a humanized monoclonal antibody, is one such agent. It
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blocks cell-cell adhesion by targeting P-selectin.111 In a
double-blind, randomized phase 2 trial, 198 patients were
given either high- or low-dose crizanlizumab or placebo.111

The annual median crisis rate decreased 45.3% in patients
who received the high dose of the drug and decreased
32.6% in patients who received the low dose. Eighteen per-
cent of the patients enrolled in the study experienced no
crises at all during the treatment phase. The drug was admin-
istered by intravenous infusion and was shown to have a rel-
atively long 30-day half-life. However, the fact that the drug is
administered by intravenous infusion could possibly prove to
be a drawback to its use. Also, the study’s impact and impor-
tance were diminished somewhat by not having included
children.

Improvement in Flow Dynamics
Poloxamer 188. Although most of the agents that have

been discussed to this point involve a preventive approach
to sickle cell disease, poloxamer 188, a nonionic block co-
polymer surfactant, has been shown to improve microvascu-
lar blood flow in sickle cell disease by decreasing blood
viscosity.112-115 How it does so is not well understood. How-
ever, poloxamer 188 seems to block aggregating interac-
tions of cells to cells and cells to protein in the blood. In a
randomized, double-blind, placebo-controlled trial examin-
ing the effects of poloxamer 188 on patients in active crisis,
the duration of crisis was decreased in those taking the
drug, with 52% reporting crisis resolution vs 37% of those
on placebo.112 Renal dysfunction, however, was reported
in early trials of poloxamer 188 for treatment of patients
with myocardial infarction.113,114 In an early phase 2 study
using poloxamer 188 in sickle cell disease, one patient (of
28) receiving the drug developed renal dysfunction (defined
by a rise in serum creatinine), but he had preexistent mild
renal impairment.115 Renal involvement was subsequently
presumed to be the result of the presence of low molecular
weight substances in the early and less homogeneous for-
mulations of the drug. After purification of poloxamer 188,
far fewer cases of renal toxicity were reported.116,117 Or-
ringer and his coinvestigators also showed that the safety
profile was acceptable.112

Prevention of Polymerization
Voxelotor (GBT-440). Most studies focused on preventing

polymerization of the sickle erythrocyte have involved the
use of drugs that could turn back the hands of the clock
and switch on the production of hemoglobin F. However, a
novel drug that inhibits polymerization through a ground-
breaking technique has generated considerable excitement
among hematologists. Voxelotor (GBT-440) is a small mole-
cule that in binding to hemoglobin S increases the oxygen
affinity of the hemoglobin S molecule.118,119 Voxelotor there-
by inhibits polymerization of the molecule and can prevent
damage to the red cell. Clinical trials involving this drug
have been quite promising. In a 90-day trial, a marked de-
crease in hemolysis from baseline to day 90 was observed,
along with a sustained decline in the number of irreversibly
sickled cells, a median decrease of about 70%.120 Prelimi-
nary results of a phase 2a clinical trial showed that
teenagers given the drug at a dose of 900mg daily experi-
enced improvement in the disease, while 55% had improve-
ment of hematologic parameters such as hemoglobin and

reticulocyte count.121 In a single-center experience pub-
lished in 2017, 7 patients who would not have met the strict
inclusion criteria established by Global Blood Therapeutics
for the company’s phase 3 trial were given the drug for pe-
riods up to 15 months.122 One patient was noncompliant,
but all patients taking the drug as instructed had increases
in hemoglobin. Hospital admissions for vaso-occlusive crisis
declined by 60%, chronic pain described as “background
pain” decreased, all patients reported reduced fatigue, and
those who required transfusion saw a decrease in transfu-
sions by approximately 50%. For patients who required
chronic supplemental oxygen, oxygen saturation increased
to the extent that they were able to stop the oxygen. Of
course, the experience of 7 people is not conclusive evidence
of a drug’s efficacy, and a larger study is needed to prove
whether the drug has true effectiveness. Such a phase 3
study is underway, and results are being accrued in an inter-
national, multicenter trial (NCT03036813).123 The FDA has
designated the drug as a “breakthrough therapy.”124

CURES FOR SICKLE CELL DISEASE
Stem Cell Transplantation
The only cure available to patients with sickle cell disease

is stem cell transplantation. However, the selection of pa-
tients who should benefit from this treatment modality is con-
troversial. Transplant has been performed, for the most part,
in patients who have suffered a stroke, have had multiple
episodes of acute chest syndrome, or have had recurrent
vaso-occlusive crises (≥3 episodes requiring hospitalization
per year), ie, patients considered to have the worst dis-
ease severity.125 Controversies have arisen not only about
whom to transplant but also about the optimal age to trans-
plant, source of donor cells, and type of conditioning
regimen.126-130 Most stem cell transplants thus far have relied
upon myeloablative conditioning regimens and have been
bone marrow–derived with human leukocyte antigen (HLA)-
matched sibling donors as the source of stem cells.131,132

But the probability of an individual having a matched sibling
donor is only 16%-20% among minorities if an 8 of 8 allele
match is sought.126,133 The effort to expand the availability
of transplant for most patients with sickle cell disease has
led to consideration of alternative donor sources, such as
cord blood, matched unrelated, and haploidentical cells.
Gluckman et al conducted a survey of 1,000 recipients of

HLA-identical sibling transplants from European, American,
and non-European centers.134 Sixty percent of patients un-
derwent myeloablative conditioning, and the unadjusted
overall survival rate after 5 years and event-free survival
rate were 92.9% and 91.4%, respectively.134 Transplant led
to stabilization of organ function, gradually ameliorated com-
plications of sickle cell disease such as cardiovascular and
pulmonary dysfunction, and reduced the occurrence of
vaso-occlusive episodes. In another series, results from
HLA-identical sibling transplants after myeloablative condi-
tioning with antithymocyte globulin were reported.135 The
event-free survival rate for sibling transplants after myelo-
ablative regimens was approximately 95% in this series.135

While myeloablative conditioning has remained the standard
of care for hematopoietic stem cell transplantation, it has
been associated with toxicities that have included veno-
occlusive disease of the liver and neurotoxicities such as sei-
zures, stroke, and brain hemorrhage.133 Late effects of
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transplant such as growth failure, hypogonadism, sterility,
and secondary malignancies have also been reported.128-133

The median age for transplantation has been 9-10 years; in-
dividuals who are older have not fared as well, with a lower
probability of survival in general and of graft-vs-host-disease
(GVHD)–free survival in particular.130

Attempts at decreasing the toxicities associated with trans-
plantation have resulted in the use of less-rigorous condition-
ing regimens (reduced-intensity conditioning regimens). For
these transplants, the goal became producing a state of
mixed chimerism in which recipient marrow is incompletely
replaced by donor cells, producing in some instances a
trait-like phenotype. These regimens have been better toler-
ated, especially in patients with preexisting comorbidities,
and have resulted in an 86%-90% disease-free survival
rate.133,136-138 Indications of what the lower limit of red cell
donor chimerism is to allow improvement of disease manifes-
tations have varied. In 2017, Fitzhugh and colleagues pub-
lished a paper in which they stated that chimerism of 20%
is necessary to abrogate the sickle phenotype.139 However,
the earlier experience of Walters and coauthors cited results
in which one individual with as few as 11% donor cells ex-
pressed a hemoglobin S level of 7% and ceased to have a
transfusion requirement; he also did not have symptoms
consistent with sickle cell disease any longer.140 One signif-
icant problem associated with reduced-intensity transplanta-
tion remains the higher likelihood of loss of donor cells or
engraftment failure.
The search for alternative sources of stem cells has also

led to the use of unrelated donors. Unrelated donor marrow
transplants have had less success, with 1- and 2-year event-
free survival rates of 76% and 69%, respectively, and over-
all survival of 86% and 79%, respectively.140 The rate of
GVHD was relatively high (62%), and more GVHD-related
deaths occurred than would be ordinarily seen with related
donors.140

Unrelated cord blood has also been proposed as a
source of donor cells, but the graft failure rate in one study
was fairly high (52%), and the overall survival was 94%.141

In one trial utilizing a reduced-intensity conditioning regimen
prior to transplantation with unrelated cord blood, a graft fail-
ure rate up to 63% was observed, leading the authors to
conclude that donor engraftment needs to improve before
unrelated cord blood transplants can be recommended.142

Related cord blood transplants are characterized by a
significantly longer time to engraftment for neutrophils and
platelets.143-145 In one study with a median follow-up time
of 70 months, disease-free survival at 6 years was reported
to be 90%.146 No grade IV GVHD or extensive chronic
GVHD was seen, and the cumulative incidence of primary
graft failure was low (9%). However, a limitation of this treat-
ment modality is the inability to transplant large individuals
or adults using cord blood as a source of donor cells be-
cause of insufficient numbers of nucleated or stem cells in
the aliquots to be transplanted147,148 and the slower en-
graftment of neutrophils and delays in immune reconstitu-
tion that may place the patient at increased risk of viral
illness.144

Haploidentical transplants have been tried as well but
have been reported to have a high rate of graft failure
(43%).149 To improve on this rate of engraftment failure, pa-
tients have been treated with cyclophosphamide posttrans-

plantation.150,151 Graft failure after one trial was still 43%,
but no serious toxicities were seen.150 Overall, the use of al-
ternative donors (mismatched related or unrelated) has not
resulted in the same measure of success. Graft failure
rates of 38%-43% have been recorded, and long-term com-
plications have included declines in renal, pulmonary, and
cardiac function because of the transplantation procedure
itself.149,150

In summary, transplantation is the optimal treatment for
sickle cell disease, being the only curative approach. How-
ever, clarification is needed on who is an optimal candidate,
and donor sources must be expanded to balance the lesser
availability of donors among minorities.
Also, a clear relationship must be established between

transplantation outcomes and improved quality of life, a re-
lationship that to date has not been seen consistently or de-
finitively. With regard to quality of life determinations,
significant improvement may occur 1 year from a successful
transplant, but the data are inconclusive.152 The reluctance
of primary providers to refer individuals for transplantation
is a challenge to overcome as well because, as suggested
in a retrospective study of hydroxyurea, patients treated
with hydroxyurea may have had better survival than those
treated with allogeneic stem cell transplantation.153

Gene Therapy
Because transplantation can be offered to relatively few in-

dividuals, hope for reaching more patients with a treatment
of curative intent has focused on efforts to develop gene
therapy. Recently, progress has been speeding along to-
ward that goal. We now know that the most common single
type of genetic variation in people is the single nucleotide
polymorphism (SNP). Each SNP represents a nucleotide
change in the DNA genome sequence and results in unique
nucleotide change(s) in the genomic sequence of DNA. As a
result, unique DNA patterns for each individual are pro-
duced. Capitalizing on this knowledge, investigators from
several groups demonstrated that 3 SNPs are in the
BCL11A and HBB gene regions that correlate with high he-
moglobin F expression.154-157 On the other hand, the gene
MYB acted as a negative regulator of gamma globin expres-
sion. MYB was subsequently silenced by miR16 (microRNA
R16) through binding of a 3’-untranslated region. Transfec-
tion of miR16 by Pounds and coinvestigators into human
basophilic leukemia cell line KU812 cells in vitro resulted
in gamma globin activation in a dose-dependent manner.158

This work eventuated in genetic correction of the sickle
cell mutation in human cells and ultimately in actual individ-
uals. Genome editing systems, such as transcription
activator–like effector nucleases (TALENs), zinc finger nucle-
ases, and clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) have
been developed that can target DNA sequences around
sickle mutations in the beta globin gene.158,159 These muta-
tions are then cleaved in a site-specific manner, employing
homologous donor templates to modify or replace altered
DNA with the properly sequenced DNA. Gene modification
of only 18% was sufficient to correct the sickle mutation
and allow production of wild-type hemoglobin. On average,
these efforts resulted in production of hemoglobin A, com-
prising 7.3% of total hemoglobin, with rates as high as
12.6%.160 Effort has also been made to modify the gamma
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globin gene because fetal hemoglobin is a more potent anti-
sickling hemoglobin than adult or A hemoglobin.
Gene therapy has progressed to the point of human trial

and was reported in 2017 in a patient having sickle cell dis-
ease.160 Employing a lentiviral vector encoding the human
HBB variant βA-T87Q, researchers performed ex vivo gene
transfer into the patient’s own hematopoietic stem cells and
then performed an autologous transplant utilizing these
cells. The patient had undergone myeloablation with intrave-
nous busulfan. After transduction of CD34+ cells, a steady
rise in hemoglobin AT87Q production was noted over time.
The patient, previously transfusion-dependent, was able to
discontinue red cell transfusions by day 88 posttransplant.
The hemoglobin remained stable at levels of 10-12 grams%
6 months later. The hemoglobin percentage remained at
48% by posttransplant month 15, with a corresponding de-
crease in hemoglobin S levels. Despite concerns about off-
target activity of CRISPR/Cas9 or similar nuclease or vector
insertional error, no adverse effects were related to the lenti-
viral transduction of the stem cells, perhaps because lentivi-
ruses tend to insert themselves randomly with a bias toward
integration into areas of already expressed genes, thereby
minimizing transactivation of nearby genes. This property
acts to tamp down the potential for insertional oncogenesis.
The patient had no replication-competent lentivirus extant.
Most significantly, the patient had no sickle cell–related hos-
pitalizations or other complications. Erythropoiesis progres-
sively showed signs of normalization. No tendency towards
clonal domination was detected. This case provides opti-
mism that we are finally moving forward in the search for
other curative therapies that can be offered to a wider array
of patients than has ever been possible in the past.

CONCLUSION
These examples of new approaches to the treatment of

patients with sickle cell disease sample some of the current
attempts to moderate or cure the disorder. Interest in sickle
cell research has blossomed and now can offer hope to the
many individuals living with this disorder around the world.
Many more clinical trials need to be initiated and subjected
to more strenuous examination and analysis than have been
used in the past. Efforts will have to be made to offer these
therapies in less advanced countries where the majority of
individuals with sickle cell disease live. These initiatives
now appear more possible than ever before.
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