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ABSTRACT

Background: Diabetes mellitus is associated with an increased
risk of cardiovascular disease. Intimal thickening, a component
of cardiovascular disease, entails the proliferation and
migration of vascular smooth muscle cells (VSMCs). Inhibition
of the mammalian target of rapamycin (mTOR) blocks VSMC
proliferation, in part through an increase in the cyclin-
dependent kinase inhibitor, p27X*'. The use of mTOR
inhibitors, such as rapamycin, is effective clinically in inhibiting
intimal thickening. This efficacy is reduced in diabetic subjects,
however, suggesting a change in the role of the mTOR pathway
in intimal thickening under diabetic conditions.

Methods: To examine whether diabetes induced changes in the
role of mTOR in VSMC proliferation, we compared the
response to rapamycin of human coronary artery VSMCs from
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diabetic (DM-huCASMC [human coronary artery smooth
muscle cell]) and nondiabetic (ND-huCASMC) subjects.
Results: The DM-huCASMCs exhibited a relative resistance to
rapamycin’s inhibition of proliferation. Activation of the mTOR
effector p705"3¢ was inhibited in rapamycin-treated DM-
huCASMCs as in ND-huCASMCs. While ND-huCASMCs
exhibited the normal increase in p27"' in response to
rapamycin treatment, the DM-huCASMCs did not. Additionally,
activation of the extracellular signal response kinase pathway
was increased in the DM-huCASMCs, suggesting a potential
pathway mediating the mTOR-independent decrease in
p27Kip1'

Conclusion: We conclude that diabetes is accompanied by a
relative resistance to the effects of mTOR inhibition on VSMC
proliferation through a loss of mTOR’s effects on p27XP!
levels. These data provide insight into the effects of insulin
resistance on the role of mTOR in regulating intimal thickening.

INTRODUCTION

Mortality from cardiovascular disease (CVD) is 2 to
4 times higher in diabetic patients than in nondiabetic
patients.! Multiple aspects of diabetes result in an
inflammatory insult to the vasculature, including
hyperglycemia,® hypoglycemia,®® inflammation,*®
and reactive oxygen species.”® While it is clear that
this increased injury to the vasculature promotes
increased CVD in diabetic patients, changes in the
cellular and molecular responses to these insults may
also play an important role in increased CVD in the
diabetic population.?'%!

One component of the arterial response to injury,
intimal hyperplasia, is increased in diabetic patients
following percutaneous coronary interventions and
leads to increased restenosis.'®"'® Intimal hyperplasia
consists largely of vascular smooth muscle cell
(VSMC) proliferation and migration. VSMCs isolated
both from animal models of diabetes and diabetic
patients exhibit increased proliferation and migration,
suggesting that VSMCs adopt a prointimal thickening
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phenotype in the diabetic setting.’*'® Intimal thick-
ening also plays a key role in the earliest stages of the
pathogenesis of an atherosclerotic lesion when lipid
deposition occurs in the extracellular matrix of areas
of diffuse intimal thickening.'”""®

VSMC proliferation and migration are regulated by
the cyclin-dependent kinase inhibitor, p27<'. Quies-
cent VSMCs maintain elevated levels of p27¥P! that
block VSMC proliferation and migration and inhibit
neointimal hyperplasia.?’2! Upon injury, the p27<P?
protein is downregulated through the activation of the
mammalian target of rapamycin (mTOR) as neointimal
hyperplasia progresses.?’° Inhibition of mTOR
blocks VSMC proliferation and migration and is an
effective strategy in the prevention of in-stent reste-
nosis through the use of drug-eluting stents.?>?®
While drug-eluting stents that deliver mTOR inhibitors
are more effective than bare metal stents in diabetic
patients, the efficacy of mTOR inhibition is reduced.?®

Here we report that VSMCs isolated from the
coronary arteries of diabetic donors exhibit a relative
resistance to the ability of mTOR inhibition to block
cell proliferation. Furthermore, we find that the effect
of mTOR inhibition on p27X%' levels is lost in the
VSMCs of diabetic donors, suggesting a mechanism
for the relative resistance to mTOR inhibition. These
data provide a molecular basis for the increased
neointimal hyperplasia and the decreased efficacy of
mTOR inhibitor-eluting stents in diabetic patients.

METHODS
Cell Culture

Human coronary artery smooth muscle cells
(huCASMCs) from diabetic (n=3) and nondiabetic
(n=3) donors were obtained from Lonza, Inc. (Wal-
kersville, MD) and maintained in human smooth
muscle growth medium (SmGM-2; Lonza) with media
changes every 48-72 hours. Rapamycin was obtained
from LC Laboratories (Woburn, MA). Cell proliferation
assays were performed in triplicate as previously
described.®° Briefly, huCASMCs (2,000) were seeded
into 96-well plates and incubated in basal media
(SmBM; Lonza) supplemented with 0.5% fetal bovine
serum (FBS) overnight. Proliferation was stimulated
with SmGM-2 for 72 hours. huCASMCs were used up
to passage 6. Data are presented as the mean of the
data from the different huCASMC isolates. The half
maximal effective concentration (ECsp) was calculated
using linear regression of the log-transformed mean
dose-response data.

Western Blotting

Western blots were prepared as previously de-
scribed®' and probed with primary antibodies pur-
chased from BD Biosciences (p27X?'; San Jose, CA),
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Santa Cruz Biotechnology (p70%%K"@se; Santa Cruz,
CA), and Cell Signaling Technology (B-actin; Beverly,
MA) and with secondary antibodies from Vector
Laboratories, Inc. (Burlingame, CA). The p27*! and
p705¢kinase Krimary antibodies were used at a 1:1,000
dilution, and the p-actin was used at a 1:2,000
dilution. huCASMCs were serum starved in SmBM
supplemented with 0.5% FBS overnight and then
incubated in SmGM-2 for 1 hour for the p70Se«inase
and overnight for the p27X®" measurements.

Statistics

All data are expressed as the mean + standard
error of the mean. For comparisons across increasing
doses of rapamycin, analysis of covariance was used
to test for statistical differences with dose treated as a
covariate. P<0.05 was considered significant.

RESULTS
huCASMCs Isolated From Diabetic Donors
Exhibit a Relative Resistance to Rapamycin
To measure the effect of diabetes on the ability of
mTOR inhibition to block VSMC proliferation, we
measured the proliferation of huCASMCs isolated
from diabetic (DM-huCASMC) and nondiabetic (ND-
huCASMC) donors in the presence of increasing
doses of the mTOR inhibitor rapamycin (0-100 nM).
The DM-huCASMCs exhibited a significant relative
resistance to rapamycin treatment compared to ND-
huCASMC controls (Figure 1, P<0.01). This resis-
tance is seen both as a reduction in the maximal
inhibitory effect (69% =+ 7% to 38% + 5%, P<0.05) and
in a 10-fold shift in the ECsq (5-50 nM). These results
suggest that diabetes is accompanied by a dimin-
ished role for the mTOR pathway in controlling VSMC
proliferation.

Regulation of p27X?' by mTOR Is Reduced in
DM-huCASMCs

To test whether the effects of mMTOR on its
downstream effectors were maintained in the DM-
huCASMCs, we measured the ability of rapamycin
treatment (0-100 nM) to inhibit the phosphorylation of
p705¢kinase and p27KP! in response to stimulation with
growth media. Rapamycin treatment was effective at
reducing phosphorylation of p705¢"3s¢ in both the
DM-huCASMCs and ND-huCASMCs (Figure 2A),
demonstrating that the ability of rapamycin to inhibit
mTOR is not lost in the DM-huCASMCs. In contrast,
the DM-huCASMCs did not exhibit the increase in
p27¥1 protein levels in response to rapamycin
treatment seen in the ND-huCASMCs (Figure 2B).
Thus, while rapamycin is able to inhibit the mTOR
pathway under diabetic conditions, there is a dysreg-
ulation of mTOR and p27KP!.
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Figure 1. Rapamycin dose-response curves for proliferation
of human coronary artery smooth muscle cells (huCASMCs)
from nondiabetic (ND-huCASMC) and diabetic (DM-hu-
CASMC) patients.

Dysregulation of p27¥*' and mTOR Is Asso-
ciated With an Increase in Activation of the
Extracellular Signal Response Kinase Path-
way by Insulin

Previously, we reported that a similar resistance to
mTOR inhibition was associated with increased

activation of the extracellular signal response kinases
1/2 (ERK1/2) and decreased Akt activation in re-
sponse to insulin.’® We therefore measured phos-
phorylation of ERK1/2 and Akt at sites promoting
activation in response to physiological insulin levels
(0-10 pM). The DM-huCASMCs exhibited increased
ERK1/2 activation and a loss of Akt activation in
response to insulin compared to ND-huCASMCs
(Figure 3). Combined with our previous report, these
data suggest that the dysregulation of mTOR and
p27KP! seen in the DM-huCASMCs may result from
increased activation of the ERK1/2 pathway in
response to physiological insulin concentrations.

DISCUSSION

This study reports that huCASMCs isolated from
diabetic subjects exhibit a resistance to mTOR
inhibition and that this resistance is derived from a
dysregulation of mTOR and p27"P'. Initial studies in
cultured VSMCs and in the porcine model of vascular
injury suggested a critical role for p27X%" in rapamy-
cin’s ability to inhibit neointimal hyperplasia.?'#32°
Studies in our laboratory mirror the earlier studies that
support a role for p27%iP1 1431 A recent report
provided new data in support of a role for p27KP! in
the vascular response to injury in 2 animal models in
which S-phase kinase-associated protein (Skp2) was
downregulated, increasing p27X"'. Neointimal hyper-
plasia was reduced both in Skp2”" mice following
carotid ligation and in balloon-injured rat carotids
treated with an adenovirus expressing a dominant
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Figure 2. Representative Western blots (WB) of (A) p705¢%"2s¢ and (B) p27%'*" in response to
incubation with increasing doses of rapamycin. Human coronary artery smooth muscle cells
(huCASMCs) in diabetic (DM-huCASMC) and nondiabetic (ND-huCASMC) patients were serum
starved overnight (U) and then stimulated with smooth muscle growth medium for 1 hour
(p7056kinase) or gvernight (p27X"'). Phosphorylated p7056%"@s appears as the slower migrating
band labeled p-p70, and unphosphorylated p705°“"® appears as the faster migrating band
labeled p70. p-actin is presented as a loading control for the p27%"*! blots. Note: The lower band
in the DM-huCASMC p27X"" blot is a nonspecific band.
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Figure 3. Representative Western blots (WB) of (A)
phosporylated and total extracellular signal response kinases
1/2 (ERK1/2) and (B) Akt in response to incubation with
increasing doses of insulin. Human coronary artery smooth
muscle cells (1uCASMCs) were serum starved overnight and
then stimulated with smooth muscle basal media supple-
mented with insulin for 10 minutes. Ser473, serine 473;
Thr202, threonine 202; Ty204, tyrosine 204.

WB: ERK1/2

negative Skp2”.32 Additionally, adenoviral delivery of
wild-type Skp2 reduced p27"" levels and increased
neo:i;;\timal hyperplasia in minimally injured rat carot-
ids.

Previous reports indicated that VSMCs isolated
from animal models of diabetes and from diabetic
subjects exhibit increased rates of proliferation.'*'®
Our work builds on those findings by identifying that
the regulation of p27¥%'" by the mTOR pathway is
diminished in the DM-huCASMCs. These findings are
similar to those seen in murine BC3H1 cells that were
selected for resistance to rapamycin. The rapamycin-
resistant BC3H1 cells also exhibited a lack of an
increase in p27"P' in response to rapamycin, while
maintaining an intact p705¢*"#%° response to rapamy-
cin.®* The mechanism behind the dysregulation of
mTOR and p27XP" warrants further investigation. We
recently reported that in VSMCs lacking the insulin
receptor, a similar resistance to rapamycin was
observed and was linked to an increase in the
activation of the ERK1/2 pathway that promoted
degradation of p27KP' messenger RNA (mRNA)."
We observed a similar increase in ERK1/2 activity in
response to insulin in the DM-huCASMCs, suggesting
a common mechanism. Because mTOR inhibition
blocks degradation of the p27*" protein, degrada-
tion of p27¥"' mRNA through increased ERK1/2
activity is a potential mechanism for the dysregulation
of p27¥"! and mTOR.'®' An increase in ERK1/2
activity has also been observed in other animal
models of diabetes.®® Future studies are needed to
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elucidate the mechanism driving an increase in
ERK1/2 activity in the vasculature of diabetic subjects
and its impact on the regulation of p27¥*! and intimal
thickening.

CONCLUSION

These data demonstrate that huCASMCs isolated
from diabetic donors exhibit a relative resistance to
the antiproliferative effects of mTOR inhibition. This
resistance is derived from a dysregulation of mTOR
and p27KP!, similar to that seen in other rapamycin-
resistant cells. Further investigation into the mecha-
nism behind this dysregulation may impact the design
of future therapies for vasculoproliferative diseases
that target the diabetic population.
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