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REVIEWS AND CONTEMPORARY UPDATES—

Background: Cyclin D1 is an important protein for cell cycle progression; however, functions independent of the cell cycle have
been described in the liver. Cyclin D1 is also involved in DNA repair, is overexpressed in many cancers, and functions as a proto-
oncogene. The lesser-known roles of Cyclin D1, specifically in hepatocytes, impact liver steatosis and hormone regulation in the liver.
Methods: A comprehensive search of PubMed was conducted using the keywords Cyclin D1, steatosis, lipogenesis, and liver
transplantation. In this article, we review the results from this literature search, with a focus on the role of Cyclin D1 in hepatic
lipogenesis and gluconeogenesis, as well as the impact and function of this protein in hepatic steatosis.

Results: Cyclin D1 represses carbohydrate response element binding protein (ChREBP) and results in a decrease in transcription of
fatty acid synthase (FAS) and acetyl-coenzyme A carboxylase (ACC). Cyclin D1 also inhibits peroxisome proliferator-activated
receptor gamma (PPARY) which is involved in hepatic lipogenesis. Cyclin D1 inhibits both hepatocyte nuclear factor 4 alpha (HNF4a)
and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1a) and represses transcription of lipogenic genes
FAS and liver-type pyruvate kinase (Pklr), along with the gluconeogenic genes phosphoenolpyruvate carboxykinase (PEPCK) and
glucose-6-phosphatase (G6Pase).

Conclusion: Cyclin D1 represses multiple proteins involved in both lipogenesis and gluconeogenesis in the liver. Targeting Cyclin
D1 to decrease hepatic steatosis in patients with nonalcoholic fatty liver disease or alcoholic fatty liver disease may help improve

patient health and the quality of the donor liver pool.
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INTRODUCTION

The liver is the major site for nutrient synthesis as well as
carbohydrate, lipid, glucose, and drug metabolism. Liver injury
resulting from trauma, surgical excision, viral infection, chronic
alcoholism, and/or poor diet causes hepatocyte turnover and
elicits cellular programs leading to liver regeneration. Viral
infections (hepatitis B and C),'® as well as alcoholic fatty liver
disease and nonalcoholic fatty liver disease (NAFLD),” '
trigger chronic inflammation with persistent activation of liver
regeneration pathways that can progress to cirrhosis and
fibrosis, requiring curative liver transplantation. Despite ad-
vancements in hepatitis C viral (HCV) therapy, patients with
HCV may still progress to HCV cirrhosis, requiring liver
transplantation. Although the number of HCV patients
requiring liver transplantation has stabilized and should
decline, the prevalence of NAFLD and nonalcoholic steatohe-
patitis (NASH) continues to rise. The net effect is a continuous
rise in the number of patients on the liver transplant wait list
while the donor liver pool remains stable. Although extended
criteria donor livers, such as those of advanced age, with liver
macrosteatosis, or procured after cardiac arrest, may help

56

address this deficit, these grafts have a higher risk of acute
graft dysfunction and graft failure compared to donor livers
meeting standard criteria and deemed suitable for transplan-
tation.""'® Grafts with prevalent macrosteatosis are particularly
at risk for graft failure. The obesity epidemic and the rising
prevalence of NAFLD will increase the frequency of steatosis
in donor liver procurements. Biomarkers that capture the
failure risk associated with donor steatosis will be required,
particularly because the percentage of macrosteatosis may
not reliably predict failure risk.

The process of organ procurement, preservation, and
transplantation causes ischemia/reperfusion injury, leading to
inflammation and hepatocyte turnover.' In the healthy liver,
this process triggers stellate cell activation and hepatocyte
proliferation, ultimately stabilizing liver function postsurgery in
the transplant recipient.'®>2? Sequential biopsies of a patient
undergoing partial orthotopic liver transplantation demon-
strated continuous hepatocyte proliferation that eventually
restored the patient’s original liver mass 14 months after
transplantation.>® Steatotic hepatocytes, containing intracel-
lular lipid droplets, have a lower threshold for ischemic injury
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and a dampened proliferative response postinjury that
contribute to greater necrotic injury and extended recovery
periods in transplanted steatotic donor livers.?*

Signaling pathways that trigger proliferation in hepatocytes
converge upon Cyclin D1, the gatekeeper into the cell cycle.
Cyclin D1 plays an instrumental role in liver regeneration, as
evidenced by studies of small-for-size vs half-size grafts.
Small-for-size grafts resulting in graft failure had limited
induction of Cyclin D1, while half-size grafts that regenerated
to restore original liver volume contained a nearly 8-fold
higher induction of Cyclin D1.2° Further, impaired liver
regeneration in steatotic rats following ischemia/reperfusion
injury was attributed to delayed induction of Cyclin D1
compared to healthy controls.?® Studies have described
several cell cycle-independent functions of Cyclin D1,
including lipid and carbohydrate metabolism and hormone
regulation. Deficits in nonessential amino acids trigger Cyclin
D1 repression and impaired hepatocyte regeneration.?’

In this review, we briefly cover the canonical pathway of
Cyclin D1 in cell cycle progression and its overexpression in
some cancers. The majority of this article reviews the
noncanonical pathways of Cyclin D1 in the liver regarding
carbohydrate and lipid metabolism, hormone regulation,
and the progression from simple to severe liver steatosis.

CYCLIN D1 PROTEIN STRUCTURE

Cyclin D1 contains multiple domains and motifs that
activate and/or repress numerous proteins in the liver
involved in steatosis and hormone regulation. Cyclin D1
belongs to the highly conserved D-type cyclin family,
originally identified as universal cell cycle regulators.?® Cyclin
D1 is encoded by the gene CCND1, located on the long arm
of chromosome 11 at position 13.3, and spans 13,388
bases.?>3° The CCND17 gene contains 5 exons translated to
295 amino acids with a molecular weight of 33.7 kDa.*"

The N-terminal consists of a retinoblastoma (Rb) binding
domain and an LXCXE motif that some researchers maintain
is required for the phosphorylation of Rb. This domain and
motif are also found in other D-type cyclins, Cyclin D2 and
D3. Reports conflict as to whether the LXCXE motif is
required for Rb phosphorylation.®>3® The cyclin box,
located near the center of the protein, functions as the
binding location for cyclin-dependent kinase 4 and 6 (CDK4
and CDK®8). Point mutation in the 112th residue of Cyclin D1,
switching from a lysine to a glutamic acid (K112E mutant),
abolishes binding to and subsequent activation of CDK4.%¢
The repressor domain, located within amino acids 142-253,
is involved in repression of multiple proteins, including
androgen receptor and hepatocyte nuclear factor 4 alpha
(HNF40).3738 Following the repressor domain is the LLXXXL
motif that binds to the steroid receptor coactivator-1 (SRC-
1).%° Last is the PEST sequence, a proline-, glutamate-,
serine-, and threonine-rich region through which Cyclin D1
is targeted for degradation through proteolysis.*® An array
of domains and motifs in Cyclin D1 allows complex
interactions and the functional diversity required for its
important canonical role in cell cycle progression.

THE CANONICAL PATHWAY OF CYCLIN D1 IN
THE CELL CYCLE

The mechanisms of the interactions and function of Cyclin
D1 and its binding partners in cell cycle progression from
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the G1 to the S phase, as well as its interactions with CDK4,
have been thoroughly characterized and reviewed.?841:42
Genes encoding D-type cyclins become activated and are
further induced at the beginning of the G1 phase in
response to mitogen stimulation.?®434* During this phase,
Cyclin D1 translocates to the nucleus and remains as a
static protein bound to an immobile complex.®' In the
nucleus, Cyclin D1 assembles with its catalytic partners
CDK4 or CDK6*°° and targets its primary substrate, the
nuclear protein Rb.3"2152

Rb is the principal transcriptional repressor for many of the
genes required to progress from G1/S transition through S
phase, positioning Rb as a central target for phosphorylation
and inactivation downstream of several mitogenic signaling
pathways.®®5* During the GO phase, Rb binds to and
represses E2F transcription factors blocking gene transcrip-
tion necessary for S phase initiation and DNA replication, thus
preventing progression through the cell cycle.?®%%%% Rb
inhibits transcription of the E2F-responsive promoters through
enlistment of histone deacetylases (HDACs) to block E2F
activity at the Cyclin E promoter.’®®° Cyclin D1-CDK4
phosphorylates Rb, disrupting the repression of E2F by Cyclin
E-CDK2, enabling cell cycle progression.®’ Cyclin D1 activates
the kinase of Cyclin E-CDK2 by a second mechanism that also
blocks cell cycle progression. This noncatalytic function
sequesters Cip/Kip cell cycle inhibitors.®> Cip/Kip proteins
p21°P1 or p27"P" interact with cyclin/CDK complexes to deter
kinase activity and repress cell cycle progression.?2® Cyclin
D1 accumulates in the nuclei and disappears once the cell
enters S phase and DNA replication begins.®* Cyclin D1 is
targeted for degradation by phosphorylation of residue Thr286
by glycogen synthase kinase-3 beta (GSK3p).5>%® This
phosphorylation stimulates association with chromosome
maintenance 1 protein and facilitates the nuclear export of
Cyclin D1 to the cytoplasm.®® Once exported, phosphorylated
Cyclin D1 is ubiquitinated and degraded by the 26S
proteasome.®*®” Because of the important role of Cyclin D1
during the G1/S cell cycle transition, Cyclin D1 expression and
localization are tightly regulated in the cell.

REGULATION OF CYCLIN D1 DURING THE CELL
CYCLE

In the G1 phase, Cyclin D1 expression and assembly with
CDK4 are regulated by the Ras-Rafi-MEK-ERK kinase
cascade.®®”® Induction of CCND1 transcription is activated
through mitogen-induced Ras signaling and ERK.”* The
CCND1 promoter can also be transactivated by signal
transducer and activator of transcription (STAT) proteins,
early growth response protein-1 (Egr-1), nuclear factor-
kappa B (NF-kB), cyclic adenosine monophosphate (CAMP)
response element binding protein (CREB), B-catenin, and
JunB.”®®2 Through this signaling pathway, mitogen-activat-
ed protein kinases (MAPKs) induce Cyclin D1-CDK4
assembly, and overexpression of p41"APK stimulates Cyclin
D1 promoter activity.®® Withdrawal of mitogen signals stops
Ras signaling and CCND7 transcription.®” Degradation of
Cyclin D1 by nuclear exclusion and proteolysis through
GSK3p are controlled and prevented by Ras activation
(Figure 1). Ras signaling in collaboration with phosphatidy-
linositol-3-OH (PI3K) downregulates GSK3f through its
activity on the c-Akt proto-oncogene product (Akt), inhibit-
ing the rate of Cyclin D1 turnover.®” The PI3K-Akt-GSK3p
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Figure 1. Hepatocytes without glucose. G6Pase, glucose-6-
phosphatase; GSK3pB, glycogen synthase kinase-3 beta; P,
phosphorylated; PEPCK, phosphoenolpyruvate carboxykinase;
PGC1a, peroxisome proliferator-activated receptor gamma
coactivator-1 alpha.

cascade affects Cyclin D1 half-life as mutation of Thr286
increases the half-life of Cyclin D1 by 7-fold.®® Inhibition of
PI3K increases Cyclin D1 turnover.®” Cyclin D1 induction is
growth factor-dependent, and its transcription, protein
stability, and cellular location are firmly regulated.*®57:83
Given the importance of Cyclin D1 to promote cell
proliferation, aberrant expression of this protein can lead
to dysregulated cell division.

ABERRANT EXPRESSION OF CYCLIN D1 IN
CANCER

Cyclin D1 is one of the most amplified proteins in the
human cancer genome.®* Clinical studies have identified
CCND1 amplification in 15% of primary breast carcinomas,
with overexpression in 30%-50% of cases.®® Cyclin D1
expression accompanied by increased Rb phosphorylation
is associated with poor prognosis, necessitating aggressive
therapy.®® Ectopic expression studies in rodents revealed
deregulated cell cycle progression, fibroblast tumor forma-
tion after injection into nude mice, and recapitulation of virally
induced tumors in transgenic mice, collectively sparking
further investigation into Cyclin D1 as a proto-oncogene.?”
Antisense targeting of Cyclin D1 was shown to inhibit growth
in cancer cell lines.88 However, some studies were able to
dissociate elevated Cyclin D1 expression from Rb phosphor-
ylation, indicating that these elevations may not be purely the
consequence of increased malignant cell proliferation.®®

Investigations into Cyclin D1 amplification in breast
cancer revealed a 3’ truncated mRNA product with a longer
half-life relative to the full-length isoform.°® The truncated
cDNA isoform, named Cyclin D1b, was revealed to have a
splicing failure event at the 3’ end of exon 4, resulting in
exclusion of exon 5 and retaining 150 bases of intron 4.9"92
Cyclin D1b was frequently associated with an A/G polymor-
phism located within intron 4 that was associated with
decreased event-free survival and greater risk of relapse®
as well as higher incidence rates in several cancers. Cyclin
D1b in cancer has been extensively reviewed else-
where.*?°49 Seyeral drugs have been developed to target
Cyclin D1-CDK4 through inhibition of CDK4.%7"°" Studies
using forced expression of Cyclin D1 in cancer cell lines
revealed resistance to DNA-damaging cancer drugs, impli-
cating new roles of Cyclin D1 in DNA repair.'%%1%3
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CYCLIN D1 IN THE LIVER

Cyclin D1 is involved in activating hepatocyte prolifera-
tion, restoring liver mass after partial hepatectomy. In
hepatocytes, Cyclin D1 retains its canonical pathway in cell
cycle progression as mentioned above. Hepatocytes
account for 70% of the cells in the liver and are normally
quiescent. However, upon liver injury, as in the case of liver
transplantation or in livers that undergo resection, hepato-
cytes become primed and enter the cell cycle in efforts to
restore liver mass.?° Increased levels of Cyclin D1 were
detected in human liver biopsies following transplanta-
tion."®* Ccnd1 expression also increased in both mice and
rats following 70% partial hepatectomy in efforts to restore
liver mass.'® Cyclin D1 overexpression is sufficient to
cause proliferation in hepatocytes both in vitro and in
vivo.'%®1% |n rat primary hepatocytes stimulated with
insulin, the expression of Cyclin D1 coincided with DNA
synthesis, confirming the role of Cyclin D1 in hepatocyte cell
cycle progression.'?”

Regulation of Lipogenesis and Gluconeogenesis
Through Cyclin D1 in the Liver

The liver is the primary site of lipid and glucose
metabolism. In recent years, new functions for Cyclin D1
in the liver have emerged, particularly in regulating
lipogenesis and gluconeogenesis. Cyclin D1 regulates
transcription of genes involved in lipid metabolism and the
sensing/processing of carbohydrates and amino acids in
mouse hepatocytes.'% In fasting mice, an overall decrease
in both mRNA and protein expression of Cyclin D1 is
observed, with levels increasing upon food intake.'® In
primary rat hepatocytes, nonessential amino acid starvation
inhibited cell proliferation and resulted in undetectable
Cyclin D1; however, overexpression of Cyclin D1 in these
starved hepatocytes resulted in proliferation.?” Additionally,
in hepatocytes, minimum essential medium (MEM) amino
acids increased Ccnd1 expression significantly more than
nonessential amino acids.'’® These results indicate that
nutrient availability can impact the functions of Cyclin D1 in
the liver. Nutrient availability is particularly important in
donor livers, as time after procurement can dramatically
affect nutrient availability which could potentially affect
Cyclin D1 levels and have an impact on graft failure. In
our laboratory, Cyclin D1 was elevated in the livers of rats
with >90% macrosteatosis and resulted in death after partial
hepatectomy (unpublished data). The alternatively spliced
isoform, Cyclin D1b, was found in nuclear fractions of
macrosteatotic livers that showed slow recovery after partial
hepatectomy (unpublished data). The exact role of Cyclin
D1 in these fatty livers and how it may contribute to liver
failure after partial hepatectomy remain under investigation.
Further evidence of the importance of Cyclin D1 in liver
disease has been validated in animals with increasing
steatosis in NAFLD and NASH.""""'2 The drug metformin
has been used to treat NAFLD, resulting in inhibition of
Cyclin D1 and decreased gluconeogenesis in the liv-
er.'"311% However, studies of Cyclin D1 in human hepato-
cytes are lacking, with the majority of experiments having
been performed in mice and rats.

Regulation of Lipogenesis by Cyclin D1. Hepatic de novo
lipogenesis is the process of generating fatty acids from
excess acetyl-coenzyme A (CoA) subunits from the catabo-
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lism of carbohydrates.''® These lipids are stored in hepato-
cytes and exported as needed via very low density lipopro-
teins. Glucose is primarily taken up by the liver after feeding,
and excess carbohydrates are converted and stored as
triglycerides. Glucose is the primary driver for lipogenesis;
however, fructose also promotes lipogenesis in the liver as
reviewed elsewhere."'® De novo lipogenesis in hepatocytes is
transcriptionally regulated by the carbohydrate response
element binding protein (ChREBP)."'®'"” ChREBP is phos-
phorylated and bound to the protein 14-3-3, rendering it
inactivate in the cytoplasm. Mediators of glycolysis activate
ChREBP via dephosphorylation and dissociation with 14-3-
3.118119 Once activated, ChREBP interacts with max-like factor
x (MIlx) and is translocated to the nucleus to activate
transcription of lipogenic genes such as fatty acid synthase
(FAS) and acetyl-CoA carboxylase (ACC).28"15117 Cyclin D1
repressed transcription of ChREBP in a manner that was
dependent on the CDK4 binding domain through interactions
with the first 492 amino acids of ChREBP.%8 Cyclin D1 also
repressed lipogenic gene transcription, particularly FAS and
ACC in hepatocytes in the presence of glucose.®® This
repression resulted in decreased lipogenesis and could be
beneficial in decreasing fat accumulation in the liver as a
treatment for NAFLD when glucose is present. A 2016 report
showed that activation of CDK4 induced NAFLD in mice fed a
high-fat diet, while inhibiting CDK4 reduced the level of hepatic
steatosis in mice fed a high-fat diet."?® Additionally, elevated
levels of CDK4 protein were found in patients with fatty
livers.'®® Levels of Cyclin D1 were not evaluated; however,
inhibiting CDK4 prevented hepatocyte proliferation,® indi-
cating the involvement of Cyclin D1 in conjunction with CDK4.

Peroxisome Proliferator-Activated Receptor Gamma Re-
pression by Cyclin D1. Peroxisome proliferator-activated
receptor gamma (PPARY) is a ligand-dependent nuclear
transcriptional activator that controls fatty acid storage in the
liver.'?' Many of the genes activated by PPARy are involved
in lipogenesis.'?! PPARY is activated by certain ligands such
as fatty acids and synthetic ligands from the thiazolidinedione
class,'"22 with activation triggering fatty acid storage.
PPARYy is also upregulated in steatotic mice fed a high-fat
diet.'® PPARy overexpression induces hepatic steatosis in
the livers of peroxisome proliferator-activated receptor alpha
(PPARo) knockout mice.'®* PPARy, particularly isoform 2,
causes lipid accumulation in hepatocytes, as well as
increased expression of ACC and FAS.'®® Additionally,
PPARy-2 activation increases in de novo triacylglycerol
synthesis.'?>'26 | jver-targeted PPARy knockout mice are
resistant to hepatic steatosis when fed a high-fat diet and
have downregulated expression of lipogenesis such as ACC
and sterol regulatory element-binding protein-1c.'?” Cyclin
D1 has been shown to inhibit PPARy at residues 143-179 by
mechanisms independent of its GSK3p phosphorylation site
and CDK4 binding domain.'?® This interaction is likely
through its repressor domain. The transcriptional cofactors
P300 and CREB interact with PPARy to enhance transcrip-
tional activity."®®'3° Cyclin D1 represses p300 transactivation
at the PPARy-responsive element.'®' PPARy was downreg-
ulated in fasting mice,"®® and this downregulation is likely
independent of Cyclin D1 activity as protein levels of Cyclin
D1 also decreased in fasting mice.'® The drugs rosiglitazone
and pioglitazone bind to PPARy and repress activity and
therefore have potential utility in the treatment of NAFLD. "33
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Hepatocyte Nuclear Factor 4 Alpha Repression Through
Interactions With Cyclin D1. Cyclin D1 interacts with HNF4a,
a master regulator in hepatocytes. HNF4q is required for
normal liver development, as HNF4a knockout mice do not
express functional levels of hepatocyte-specific gene
programs, resulting in incomplete liver maturation.’*
HNF4o also promotes the transcription of the following
apolipoproteins: Al, All, B, Cll, and CIII."** These proteins
form complexes involved in delivering fatty acids into cells.
The role of HNF4a in cell proliferation and cancer has been
reviewed elsewhere.3® HNF4q binds to fatty acids; howev-
er, evidence suggests this interaction increases HNF4o
stability rather than augments transcriptional activity.'®
Cyclin D1, through its repressor domain, interacts with
HNF4a to prevent binding to the promoter regions of the
lipogenic genes FAS and liver-type pyruvate kinase (Pklr),
thereby repressing their transcription in hepatocytes.®® This
observation was reversed in knockdowns of Cyclin D1 in
hepatocytes.®® HNF4a is also involved in the transcription of
gluconeogenesis such as glycogen synthase, phospho-
enolpyruvate carboxykinase (PEPCK), and glucose-6-phos-
phatase (G6Pase).'®” These results confirm the involvement
of Cyclin D1 in repressing gluconeogenesis in the presence
of glucose. Cyclin D1 represses lipogenesis through 2
modes of action: through prevention of PPARy and through
HNF4a inducing lipogenic genes.

Cyclin D1 Repression of Peroxisome Proliferator-Activated
Receptor Gamma Coactivator-1 Alpha. The hepatic gluco-
neogenesis regulator peroxisome proliferator-activated re-
ceptor gamma coactivator-1 alpha (PGC1a) interacts with
Cyclin D1. PGC1a transcriptionally activates oxidative
phosphorylation and regulates carbohydrate metabo-
lism.'3813° PGC10a also triggers lipogenesis by promoting
expression of apolipoproteins AlV, B, CIl, and CIII."*°
PGC1a is strongly induced in fasting mice, leading to
transcriptional programs promoting gluconeogenesis
through G6Pase and PEPCK.'%%141.142 CREB also induces
expression of PGC1a in hepatocytes.'*? GSK3p inhibits
PGC1a through phosphorylation, targeting PGC1a for
proteasomal degradation.'*® GSK3p is also Ras-dependent,
as Akt can inactivate GSK3p through phosphorylation.®”
GSK3p is active in fasting animals, but it becomes
inactivated upon refeeding through phosphorylation via
insulin/Akt signaling,’'® while expression of Ccnd? and
Cyclin D1 increases after refeeding.'®'"° In the presence of
insulin and GSK3p, Cyclin D1 is sequestered in the
nucleus.'™ Cyclin D1 represses PGC1a in a manner that
is CDK4-dependent.'®® Following Cyclin D1 exportation
from the nucleus by GSK3p, PGC1a translocates to the
nucleus and activates transcription of G6Pase and PEPCK
in the absence of glucose (Figure 1). Because PGC1la
regulates its own expression, repression of PGCla by
Cyclin D1 also decreases PGC1o. mRNA expression.'%®

In mouse hepatocytes stimulated with insulin, Cyclin D1-
CDK4 becomes activated and phosphorylates GCN5.'"°
GCN5 is an acetyltransferase and when phosphorylated
binds to and acetylates PGC1a (Figure 2), decreasing its
promoter binding capabilities and thus decreasing gluco-
neogenic gene expression through G6Pase and PEPCK
repression.''®'%* | ee et al showed that upon refeeding in
mice, Ccnd1 expression increased in the liver."° In a study
published in 2014, Bhalla et al demonstrated that PEPCK,
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Figure 2. Hepatocytes with glucose. ACC, acetyl-coenzyme A carboxylase; CDK4, cyclin-dependent
kinase 4; ChREBP, carbohydrate response element binding protein; FAS, fatty acid synthase; G6Pase,
glucose-6-phosphatase; GSK3p, glycogen synthase kinase-3 beta; HNF4a, hepatocyte nuclear factor
4 alpha; Mlx, max-like factor x; PEPCK, phosphoenolpyruvate carboxykinase; PGC1a, peroxisome
proliferator-activated receptor gamma coactivator-1 alpha; Pklr, liver-type pyruvate kinase; PPARY,
peroxisome proliferator-activated receptor gamma.

G6Pase, and PGC1a mRNA expression decreased in the
livers of refed mice.'® Chemical inhibition or depletion of
CDK4 led to an increase in gluconeogenesis genes (PEPCK
and G6Pase) and glucose production in primary hepato-
cytes,"™ providing evidence that the process is dependent
on CDK4. Amino acids, and not insulin, were found to
increase Ccnd1 expression in hepatocytes.''® Perhaps lower
levels of Cyclin D1 may be found in patients with high
glucose levels, resulting in increased gluconeogenesis.
Summary. The interaction between PGC1a and HNF4a
are required for PEPCK and G6Pase transcription.'3”14!
PGC1a and HNF4a both trigger apolipoprotein expression
significantly more together than either protein alone.*
Figure 2 provides an overview of Cyclin D1 in hepatocytes
with glucose. Lipogenesis inhibition through PGC1a and
ChREBP by Cyclin D1 requires CDK4, while HNF4a
inhibition requires the repressor domain located upstream
of the CDK4 binding site. Thus, in the presence of glucose
and insulin, Cyclin D1 binds to and activates CDK4 in the
nucleus. Cyclin D1-CDK4 can then repress PGC1a and
through the repressor domain of Cyclin D1, inhibit HNF4a
and PPARy function. As a result, lipogenesis and storage of
lipids are inhibited. The question then becomes what turns
Cyclin D1-CDK4 to cell cycle progression vs inhibiting
lipogenesis? If the cell is trying to regenerate because of
liver injury, lipogenesis will be inhibited to convert all
processes for cellular division to repair liver tissue.
Interestingly, after 70% partial hepatectomy in rats, PPARy
expression increased at 48 hours,'® while DNA synthesis
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peaked at 24 hours.'® Cyclin D1 protein levels increased
24-72 hours after partial hepatectomy in rats,'*® likely
revealing that during liver injury, some mechanisms are in
place to ensure that hepatocyte proliferation occurs.

Cyclin D1 Activation of Estrogen Receptor and
Repression of Androgen Receptor in the Liver
Cyclin D1 controls hormone metabolism in the liver. In
cultured hepatocytes, Cyclin D1 is upregulated upon
stimulation with epithelial growth factor.'*” Hepatocytes
naturally express estrogen receptor alpha (ER«) and andro-
gen receptor. Particularly in the livers of rats, differences in
the number of estrogen receptors vary between males and
females as well as between prepubescent and adult
females.'® The number of estrogen receptors on the surface
of adult female rat livers is estimated to be one-third of the
number present in the uterus.'® For estrogen to activate
transcription of genes, estrogen receptors in the livers of
adult female rats require high levels of estrogen for nuclear
relocationization.’*® In breast cancer cells, Cyclin D1
activates genes containing estrogen receptor elements
through estrogen receptors in a manner that is independent
of CDK and Rb binding and the presence of estro-
gen,391%0151 a5 well as independent of phosphorylated
ERo."® Cyclin D1 directly interacts with ERo and recruits
SRC-1 family coactivators to ERa for activation through a
leucine-rich motif (Figure 3).%° Zwijsen et al showed that
mutations in the leucine-rich motif abolished direct interac-
tions of Cyclin D1 with SRC-1 and prevented ERa activa-
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tion.®® Studies conflict on whether antiestrogen compounds
affect this interaction, which seems to be cell-type depen-
dent. In the breast cancer cell line T47D, the antiestrogens
hydroxytamoxifen and ICl 182780 did not inhibit Cyclin D1
activation of estrogen responsive element (ERE)—containing
genes, while sterol carrier protein 2 (SCp2) inhibition was
observed.'®® "' The C-terminus is important for Cyclin D1
interaction with ERa, as mutations in amino acids 254 and
255 negate Cyclin D1 interactions with ER..%®

Zwijsen et al demonstrated that estrogen could induce
proliferation in vitro in hepatocytes.®® After a partial
hepatectomy, antiestrogens have been shown to reduce
the number of ERa and proliferation of hepatocytes.'®?
Additionally, arsenic-induced hepatocellular carcinoma in
mice induced both Cyclin D1 and ERa expression."®® In the
male mouse liver, hepatic Cyclin D1 expression was linked
to increases in serum estradiol levels, estrogen-dependent
gene expression, and decreased androgen-dependent
gene expression.'®* Overexpression of either Cyclin D1 or
Cyclin D1b led to the downregulation of steroid 5 -
reductase,'® an enzyme that converts testosterone into
androgen and dihydrotestosterone. Interestingly, overex-
pression of Cyclin D1b induced the expression of 3p-
hydroxysteroid dehydrogenase type 2, a protein involved in
steroidogenesis, while Cyclin D1 did not.'*

Cyclin D1 is also involved in androgen receptor inhibi-
tion."® Cyclin D1 contains a repressor domain between
residues 142-253 that is required for interactions with
androgen receptor®’ in the human prostate adenocarcinoma
cell line LNCaP. Additionally, the Cyclin D1b isoform reduced
androgen receptor regulation, although this isoform retained
the repressor domain and the ability to recruit HDACs.'%®
Less work has been done looking into the role of Cyclin D1
and sex hormones in hepatocytes. Cyclin D1 may be
involved in enhancing estrogen-dependent genes while
decreasing androgen-dependent genes. Estrogen has been
suggested to play a protective role in the liver by inhibiting
apoptosis after ischemia/reperfusion injury.'®” Furthermore,
hepatic androgen receptor knockout male mice developed
steatosis, while the females did not when fed a high-fat
diet."®® Additionally, men with liver diseases who underwent
liver resection developed feminization syndrome,'® which
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may be linked to increased Cyclin D1 and estrogen-
dependent genes. Although aberrant expression of Cyclin
D1 could increase estrogen-dependent gene expression,
implications for the development and progression of steato-
sis remain to be investigated. However, these studies
strongly suggest Cyclin D1 expression can influence
hormone levels and hormone signaling pathways in the liver.

CONCLUSION

Cyclin D1 has many diverse functions in the liver. Aside
from the canonical pathway in cell proliferation, Cyclin D1 is
involved in the repression of lipogenesis and gluconeogen-
esis through the interactions of multiple groups of proteins.
Extended criteria donors with hepatic steatosis are on the
rise, along with an increase in the number of patients on the
wait list. Current methods to improve this imbalance include
decreasing hepatic steatosis or preventing damage during
ischemia/reperfusion. Reversing hepatic steatosis in pa-
tients can improve the quality of the donor liver pool and
increase the number of livers used for transplantation.
Cyclin D1 may prove to be an excellent target to reduce
lipogenesis in fatty livers through its repression of PPARy
and HNF4a in the induction of lipogenic genes. Because of
the functions of Cyclin D1 in hepatic proliferation, targeting
Cyclin D1 could also improve liver regeneration after liver
transplantation. Further studies are necessary to determine
how Cyclin D1 functions in steatotic livers.
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