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Background: In epidemiologic investigations of disease outbreaks, multivariable regression techniques with adjustment for con-
founding can be applied to assess the association between exposure and outcome. Traditionally, logistic regression has been used
in analyses of case-control studies to determine the odds ratio (OR) as the effect measure. For rare outcomes (incidence of 5%
to 10%), an adjusted OR can be used to approximate the risk ratio (RR). However, concern has been raised about using logistic
regression to estimate RR because how closely the calculated OR approximates the RR depends largely on the outcome rate. The
literature shows that when the incidence of outcomes exceeds 10%, ORs greatly overestimate RRs. Consequently, in addition to
logistic regression, other regression methods to accurately estimate adjusted RRs have been explored. One method of interest
is Poisson regression with robust standard errors. This generalized linear model estimates RR directly vs logistic regression that
determines OR. The purpose of this study was to empirically compare risk estimates obtained from logistic regression and Poisson
regression with robust standard errors in terms of effect size and determination of the most likely source in the analysis of a series
of simulated single-source disease outbreak scenarios.
Methods:We created a prototype dataset to simulate a foodborne outbreak following a public event with 14 food exposures and
a 52.0% overall attack rate. Regression methods, including binary logistic regression and Poisson regression with robust standard
errors, were applied to analyze the dataset. To further examine how these twomodels led to different conclusions of the potential
outbreak source, a series of 5 additional scenarios with decreasing attack rates were simulated and analyzed using both regression
models.
Results: For each of the explanatory variables—sex, age, and food types—in both univariable and multivariable models, the ORs
obtained from logistic regression were estimated further from 1.0 than their corresponding RRs estimated by Poisson regression
with robust standard errors. In the simulated scenarios, the Poisson regression models demonstrated greater consistency in the
identification of one food type as the most likely outbreak source.
Conclusion: Poisson regression with robust standard errors proved to be a decisive and consistent method to estimate risk asso-
ciated with a single source in an outbreak when the cohort data collection design was used.
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INTRODUCTION
The primary objective of an outbreak investigation is to

identify the source to (1) control the epidemic and (2) pre-
vent future occurrences. To control the epidemic, efficiency
is typically prioritized in an outbreak investigation to identify
the potential origins in a timely fashion. However, to identify
the source for the purpose of preventing future occurrences,

a more precise analytical approach is required. Risk estima-
tion is one method used to identify the source.1 By evalu-
ating different exposures and comparing the risk of devel-
oping disease attributed to each exposure, the most likely
causative agent can be identified.

After an outbreak has been detected, a typical way to pro-
ceed with the investigation is to identify the cases (those
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with the disease outcome) and the non-cases (those who
have not yet developed disease). Past exposures are then
ascertained in the same way for both groups. In this prac-
tical approach, the case-control design is the applicable
design for epidemiologic data collection.1 Alternatively, the
data collection design can be conceptualized as a retro-
spective cohort study. In this design, all individuals at risk
of developing the disease could be conceptualized as an
inception cohort—a group of individuals who gathered at an
event where they were potentially exposed to putative risk
factors and could be followed to identify whether they devel-
oped the disease at the time of the outbreak investigation.2

After the data have been compiled through either of these
approaches, the association between exposures and out-
come can be determined.
In epidemiologic investigations, binomial or dichotomous

outcome variables, such as the occurrence and nonoccur-
rence of disease, are common. For example, in an investi-
gation of a Staphylococcus aureus food poisoning outbreak
that occurred in Oswego County, NY, the two states for the
dichotomous variable (disease) were ill and not-ill.3 For the
Oswego outbreak, the classic analytic approach of calculat-
ing attack rate was used. The food-specific attack rate was
calculated by dividing the number of people who ate a spe-
cific food and became ill by the total number of people who
ate that food. However, attack rate only provides the risk of
getting the disease solely among those exposed to a spe-
cific factor. The major limitation of attack rate is that it does
not allow hypothesis testing of the association between each
food with the disease.
In the contemporary approach using cohort or case-

control data collection designs, multivariable regression
techniques with adjustment for confounding can be
applied to assess the association between exposure and
outcome.4-7 Multivariable logistic regression techniques are
the most commonly used, especially for binomial outcome
variables.8-10 Traditionally, logistic regression is used in anal-
yses of case-control studies to determine the odds ratio (OR)
as the effect measure.4,11 Yet logistic regression has also
been applied to the dichotomous outcomes in cohort studies
and randomized controlled trials (RCTs).12 In cohort studies
and RCTs, logistic regression can serve as a valuable tool to
estimate risk and assess the association between exposure
and outcome in certain situations. For rare outcomes (inci-
dence of 5% to 10%), an adjusted OR can be rationally used
to approximate the risk ratio (RR).10-12 Therefore, some epi-
demiologists have advocated for the use of ORs in cohort
studies.13,14 Nonetheless, concern has been raised about
using logistic regression to estimate RR because how closely
the calculated OR approximates the RR depends largely on
the outcome rate.15,16 The literature shows that when the
incidence of outcomes exceeds 10%, ORs greatly overesti-
mate RRs.8-9 Consequently, in addition to logistic regression,
other regression methods to accurately estimate adjusted
RRs in cohort studies and RCTs have been explored.8,17 Two
methods of interest are Poisson regression with robust stan-
dard errors and log-binomial regression. These generalized
linear models estimate RR directly vs logistic regression that
determines OR.8

Even though the overestimation of RR by OR in a cohort
study has been illustrated,8 the extent of the difference
between the OR and RR in an outbreak investigation with

high-incidence dichotomous outcomes has not been exam-
ined. In this current study, estimates of gastroenteritis risk
attributed to consumption of certain foods were obtained
from analyzing simulated outbreak data using logistic and
Poisson regression. The purpose of these analyses was to
compare the ORs and RRs and to examine how these two
models led to different conclusions regarding the most likely
source of the outbreak. In addition, we examined these dif-
ferences in a set of simulated scenarios with varying attack
rates to assess whether there was a situation in which a cer-
tain statistical technique was more applicable.

METHODS
Dataset
We created a dataset to simulate a hypothetical foodborne

disease outbreak following a public event with 75 people in
attendance. This scenario included 14 types of food (foods 1
to 14). The dichotomous outcome of interest was gastroen-
teritis that occurred after ingestion of contaminated food. To
model an outbreak (common outcome), the simulated data
had an overall attack rate (incidence of disease) of 52.0%.
Food 12 was designated as the most likely source of this
single-source outbreak.
Theoretically, this situation could be conceptualized either

as a retrospective case-control study or as a retrospective
cohort study. If the data could be practically collected by
a case-control approach, the cases would consist of peo-
ple who developed gastroenteritis and sought medical treat-
ment, and the controls would be those who did not develop
the outcome. These two groups of people would be traced
backwards to identify the types of food they ingested. In this
case, the OR could be estimated to approximate the RR of
the outcome attributed to food ingestion. In contrast, if the
situation were considered a retrospective cohort study, the
cohort would be people whowere at risk of the outcome, and
food ingestion at the event would be the exposure that pre-
ceded the gastroenteritis occurrence. In this case, RR could
be directly estimated.
In our investigation, the aim was to identify the food that

most likely contributed to the gastroenteritis outbreak to pre-
vent future occurrences. We used an analytic approach that
measured the independent effect of each explanatory vari-
able, controlling for the confounding effect of other factors.
To further investigate the differences in risk estimates

when attack rates were altered from the initial dataset, we
generated 5 additional datasets with a maintained total of 75
participants. We gradually decreased the number of ill indi-
viduals by one for each subsequent scenario by altering their
status from ill to not-ill. In an effort to reduce the attack rate
for the most likely food source (food 12) and maintain the
attack rate for the second most likely source (food 4), we
selected ill individuals who initially ate food 12 without eat-
ing food 4. Thus, the effect of food 12 on the outcome of
gastroenteritis was decreased.
Because these hypothetical datasets did not involve

human subjects, no human subject research ethical con-
siderations were applicable, and institutional review board
approval was not required.

Statistical Analysis
Statistical analysis was performed using Stata software,

v.15.0 (StataCorp, LLC). Descriptive statistics are used to
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describe general characteristics of the hypothetical sub-
jects. The food-specific attack rates were calculated and
reported as percentages. Univariable logistic regression
analysis was used to estimate crude ORs and 95% con-
fidence intervals (CIs). Crude RRs and their CIs were esti-
mated using univariable Poisson regression with robust
standard errors. Adjusted ORs and RRs were obtained
through multivariable logistic regression and multivariable
Poisson regression with robust standard errors.18 The Pois-
son regression is a generalized linear model with a log link
function and a Poisson distribution.19 The robust standard
error is estimated using the sandwich estimation method to
take the incorrect assumption of Poisson distributed out-
come in the Poisson regression into consideration.8 Using
this approach, Poisson regression can be applied to esti-
mate the risk in prospective studies with binary outcomes.18

To examine whether different analytical methods led to differ-
ent conclusions regarding the food type that most likely con-
tributed to the disease outbreak, attack rate was compared
to its corresponding OR and RR that were estimated in the
multivariable models. OR, RR, and their corresponding CIs
for each explanatory variable were also compared to evalu-
ate the difference in risk estimation. In addition, the feasibil-
ity of applying log-binomial regression—a generalized linear
model with a log link function and a binomial distribution that
also allows direct estimation of RR—to analyze this data was
explored.8

RESULTS
In this hypothetical data, a higher sex-specific attack rate

was found among females (56.8%). The age-specific attack
rate was highest in the elderly age group (56.2%). Four types
of food had food-specific attack rates >60%. Food 14 had
the highest food-specific attack rate (66.7%) (Table 1).
Crude ORs were estimated further from 1.0 than the crude

RR estimates on both sides of the scale—above and below
1.0. All the CIs estimated by the univariable Poisson regres-
sion with robust standard errors were narrower than those
estimated by the univariable logistic regression (Table 2).
Multivariable logistic regression revealed two food types

with adjusted ORs �2 and statistically significant P val-
ues (foods 4 and 12). Multivariable Poisson regression with
robust standard errors, in contrast, specifically identified a
single food type with an adjusted RR �2 and statistically sig-
nificant P value (food 12) (Table 3).
When the overall attack rate of 52.0% in the prototype

scenario was reduced to 50.7% and 49.3%, the multi-
variable logistic regression model still identified two food
types—foods 4 and 12—with meaningful ORs and statis-
tical significance (Table 4). However, in these same two
scenarios, the multivariable Poisson regression consistently
identified a single food type (food 12) with an RR �2 and
statistical significance. In scenarios 4 and 5, when the over-
all attack rate was further reduced to 48.0% and 46.7%,
respectively, the logistic regression models provided mean-
ingful ORs for both foods 4 and 12; however, only food 4
maintained statistical significance. The Poisson regression
model in scenario 4 determined one food type (food 12). Yet
in scenario 5, food 12 was no longer statistically significant.
Scenario 6 (reduction of the attack rate to 45.3%) diverged
from scenarios 1 to 5 because the Poisson regression model
suggestedmultiple sources of the outbreak. Thus, scenario 6

Table 1. Characteristics of Hypothetical Subjects in a Food-
borne Outbreak (n= 75)

Variable Ill, n (%)a Not Ill, n (%)a Total, n (%)b

Overall 39 (52.0) 36 (48.0) –

Sex

Male 14 (45.2) 17 (54.8) 31 (41.3)

Female 25 (56.8) 19 (43.2) 44 (58.7)

Age, years (mean ± SD = 37.24 ± 20.9, min-max = 8-77)

�19 11 (45.8) 13 (54.2) 24 (32.0)

20-59 19 (54.3) 16 (45.7) 35 (46.7)

�60 9 (56.2) 7 (43.8) 16 (21.3)

Food consumed

Food 1 25 (54.3) 21 (45.7) 46 (61.3)

Food 2 22 (51.2) 21 (48.8) 43 (57.3)

Food 3 18 (48.7) 19 (51.3) 37 (49.3)

Food 4 18 (64.3) 10 (35.7) 28 (37.3)

Food 5 14 (60.9) 9 (39.1) 23 (30.7)

Food 6 18 (48.7) 19 (51.3) 37 (49.3)

Food 7 15 (55.6) 12 (44.4) 27 (36.0)

Food 8 2 (50.0) 2 (50.0) 4 (5.33)

Food 9 15 (48.4) 16 (51.6) 31 (41.3)

Food 10 12 (50.0) 12 (50.0) 24 (32.0)

Food 11 22 (55.0) 18 (45.0) 40 (53.3)

Food 12 34 (63.0) 20 (37.0) 54 (72.0)

Food 13 21 (44.7) 26 (55.3) 47 (62.7)

Food 14 4 (66.7) 2 (33.3) 6 (8.0)
aRow percentage.
bColumn percentage.

was outside the scope of our investigation into single-source
outbreaks.

DISCUSSION
In classical analyses, food-specific attack rates have been

used as epidemiologic evidence to show the probability
of foodborne infection following consumption of a certain
food.1 Nonetheless, analysis of food-specific attack rates in
this scenario did not lead to a definitive conclusion regarding
the source of the outbreak because four possible food types
(foods 4, 5, 12, and 14) had remarkably high attack rates,
and the confounding problem still existed (Table 1).

Univariable logistic regression and univariable Poisson
regression with robust standard errors produced crude esti-
mates of ORs and RRs (Table 2). The univariable logistic
regression model revealed 2 food types (foods 4 and 12) with
meaningful ORs (OR �2), and food 12 had statistically sig-
nificant results (P<0.05). The univariable Poisson regression
model revealed only 1 food type (food 12) with a meaningful
RR (RR �2) and statistical significance. These crude asso-
ciations between individual food types and the outcome of
gastroenteritis seemed suggestive of causal relationships,
but they were not conclusive. The univariable models did
not account for the interplay among multiple exposures or
individuals having eaten more than one type of food. If a
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Table 2. Crude Odds Ratios (OR), Crude Risk Ratios (RR), and Corresponding Confidence Intervals (CI) of Association Between
Foodborne Gastroenteritis and the Independent Variables

Univariable Poisson Regression

Univariable Logistic Regression with Robust Standard Errors

Variable OR 95% CI P Value RR 95% CI P Value

Female 1.60 0.63, 4.03 0.321 1.26 0.79, 2.01 0.337

Age, years

20-59 1.40 0.49, 3.98 0.524 1.18 0.69, 2.02 0.535

�60 1.52 0.43, 5.43 0.519 1.23 0.66, 2.28 0.515

Food consumed

Food 1 1.28 0.50, 3.24 0.609 1.13 0.71, 1.79 0.616

Food 2 0.92 0.37, 2.31 0.866 0.96 0.62, 1.50 0.867

Food 3 0.81 0.32, 2.01 0.642 0.90 0.58, 1.41 0.645

Food 4 2.23 0.85, 5.84 0.103 1.44 0.94, 2.20 0.093

Food 5 1.68 0.62, 4.56 0.309 1.27 0.82, 1.96 0.288

Food 6 0.77 0.31, 1.90 0.567 0.88 0.57, 1.37 0.571

Food 7 1.25 0.48, 3.22 0.644 1.11 0.71, 1.73 0.641

Food 8 0.92 0.12, 6.89 0.934 0.96 0.35, 2.64 0.936

Food 9 0.78 0.31, 1.96 0.599 0.89 0.56, 1.40 0.606

Food 10 0.89 0.34, 2.35 0.812 0.94 0.58, 1.53 0.815

Food 11 1.29 0.52, 3.21 0.579 1.13 0.73, 1.77 0.583

Food 12 5.44 1.73, 17.11 0.004 2.64 1.19, 5.87 0.017

Food 13 0.48 0.18, 1.25 0.133 0.71 0.46, 1.09 0.120

Food 14 1.94 0.33, 11.31 0.460 1.31 0.71, 2.43 0.384

large proportion of ill individuals who ate one innocuous
food type also ate the contaminated food type, the crude
ORs and RRs would theoretically suggest causal relation-
ships between both the innocuous and contaminated food
exposures and the disease outcome. The innocuous food
would seem to have had an effect on the outbreak. While we
actually measured the effect of the contaminated food, we
wrongly concluded that the innocuous food also contributed
to the outbreak. This problem is known as confounding.
To account for the confounding problem, multivariable

logistic regression was initially used to statistically adjust the
confounding effect, estimating the risk of disease attributed
to a certain food type independent of the effect from other
factors. In this scenario, the multivariable logistic regression
model still revealed four food types (foods 4, 11, 12, and 14)
with meaningful ORs (OR � 2), two of which had statistically
significant results (P<0.05) (Table 3). Therefore, the analy-
sis of food-specific attack rates (Table 1) and multivariable
logistic regression analysis (Table 3) similarly pointed to four
potential food types that likely contributed to the outbreak.
Although three of the four food types (foods 4, 12, and 14)
had attack rates �60% and ORs �2, conclusions regarding
which of the four food types most likely contributed to the
disease outbreak would differ according to analytic method.
Based on the analysis of attack rates, food 5 (with an attack
rate of 60.9%) would be considered in addition to foods 4,
12, and 14 (Table 1). However, food 5 failed to produce a

meaningful OR in the multivariable logistic regression model.
Conversely, food 11 which had an attack rate of 55% but an
OR of 2 would be considered a likely source of the outbreak
based on the multivariable logistic regression model.
The food-specific attack rates—an epidemiologic mea-

sure of disease frequency—indicated that food 14 was the
most likely source of the outbreak (Table 1). In contrast,
based on the adjusted ORs estimated by multivariable logis-
tic regression—an epidemiologic measure of association—
food 12 was identified as the most likely source of the out-
break (Table 3). Based on the use of the epidemiologic mea-
sure of association and the deconfounding principle, the
adjusted OR provided more reliable epidemiologic evidence
than the attack rate for identifying the likely source of out-
break in this situation.
In contrast to the multivariable logistic regression model

that revealed two possible food types that potentially con-
tributed to the outbreak, the multivariable Poisson regres-
sion with robust standard errors specifically identified food
12 as the single and most likely food type responsible for
the outbreak (adjusted RR=3.09, 95% CI=1.23, 7.80). The
other food types failed to obtain meaningful RRs and statis-
tical significance.
For each of the explanatory variables in both the univari-

able and multivariable models, the OR was estimated further
away from 1.0 than its corresponding RR. This finding from
empirical analysis indicates the overestimation of RR by OR
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Table 3. Adjusted Odds Ratios (OR), Adjusted Risk Ratios (RR), and Corresponding Confidence Intervals (CI) of Association
Between Foodborne Gastroenteritis and the Independent Variables

Multivariable Poisson Regression

Multivariable Logistic Regression With Robust Standard Errors

Variable OR 95% CI P Value RR 95% CI P Value

Female 3.07 0.80, 11.71 0.100 1.55 0.88, 2.72 0.127

Age, years

20-59 2.08 0.35, 12.49 0.422 1.14 0.54, 2.38 0.737

�60 2.21 0.27, 18.04 0.458 1.37 0.54, 3.45 0.506

Food consumed

Food 1 1.81 0.10, 31.15 0.684 1.10 0.57, 2.13 0.772

Food 2 0.18 0.02, 1.81 0.147 0.56 0.28, 1.15 0.113

Food 3 0.55 0.10, 3.04 0.497 0.77 0.44, 1.35 0.360

Food 4 5.70 1.01, 32.07 0.048 1.74 0.95, 3.22 0.075

Food 5 1.09 0.18, 6.81 0.923 0.92 0.47, 1.79 0.805

Food 6 1.83 0.20, 17.08 0.595 1.38 0.69, 2.76 0.366

Food 7 0.74 0.12, 4.48 0.742 1.07 0.60, 1.88 0.824

Food 8 0.30 0.01, 6.94 0.452 0.68 0.17, 2.77 0.586

Food 9 0.42 0.06, 3.05 0.389 0.80 0.39, 1.64 0.541

Food 10 1.75 0.31, 9.89 0.525 1.23 0.70, 2.17 0.463

Food 11 2.00 0.47, 8.52 0.349 1.23 0.63, 2.43 0.546

Food 12 7.14 1.54, 33.13 0.012 3.09 1.23, 7.80 0.017

Food 13 0.64 0.16, 2.54 0.529 0.96 0.57, 1.60 0.871

Food 14 3.54 0.30, 41.81 0.316 1.49 0.77, 2.89 0.239

Table 4. Adjusted Odds Ratios (OR), Adjusted Risk Ratios (RR), and Corresponding Confidence Intervals (CI) of Association
Between Gastroenteritis and theMost Likely Food Types in Simulated Scenarios With Decreasing Attack Rates

Overall Attack

Multivariable Logistic Regression Multivariable Poisson Regression

Attack Rate for

Food 12 Food 4 Food 12 Food 4

Rate, % Food 12, % OR 95% CI P Value OR 95% CI P Value RR 95% CI P Value RR 95% CI P Value

Prototype scenario

1 52.0 63.0 7.14 1.54, 33.13 0.012 5.70 1.01, 32.07 0.048 3.09 1.23, 7.80 0.017 1.74 0.95, 3.22 0.075

Additional scenarios

2 50.7 61.1 6.14 1.28, 29.50 0.023 7.05 1.12, 44.21 0.037 2.84 1.18, 6.87 0.020 1.74 0.94, 3.19 0.076

3 49.3 59.3 5.10 1.08, 24.13 0.040 8.91 1.37, 58.15 0.022 2.66 1.06, 6.67 0.036 1.86 0.96, 3.61 0.066

4 48.0 57.4 4.63 1.00, 21.50 0.050 8.17 1.32, 50.74 0.024 2.57 1.01, 6.52 0.048 1.89 0.97, 3.70 0.061

5 46.7 55.6 3.84 0.79, 18.66 0.095 9.86 1.49, 65.28 0.018 2.50 0.95, 6.59 0.063 1.99 0.95, 4.19 0.070

6 45.3 53.7 4.63 0.89, 24.16 0.069 22.56 2.50, 203.37 0.005 2.70 0.93, 7.79 0.066 2.90 1.29, 6.50 0.010

Notes: The attack rate for food 12, the most likely source of the outbreak, was intentionally reduced in scenarios 2 to 6 to decrease its effect on
outcome. The attack rate for food 4, the second most likely source, was constant at 64.3%.
In all scenarios, foods 12 and food 4 were the two strong contenders for the most likely source, except for scenario 6. In scenario 6, food 14 was an
additional strong contender for most likely food type (Logistic: OR=18.75, 95% CI=0.92, 381.18, P=0.056; Poisson: RR=2.52, 95% CI=1.32, 4.82,
P=0.005).
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in the analysis of a foodborne outbreak conceptualized as a
retrospective cohort study with a common outcome, consis-
tent with the theory proposed in several research methodol-
ogy articles.4,5,9,10

Although a meaningful measure of effect could be
obtained from using logistic regression in a cohort study,8,11

seeing an effect in OR without an effect in RR and drawing
a different conclusion would also be possible.12 This phe-
nomenon can be illustrated by comparing the statistically
significant adjusted OR of 5.70 to the statistically nonsignif-
icant adjusted RR of 1.74 for food 4 (Table 3). The adjusted
OR leads to the conclusion that food 4 is a strong candi-
date for contributing to the outbreak. However, the markedly
smaller adjusted RR without statistical significance does not
support that conclusion. Thus, a regression technique that
allows direct estimation of adjusted RR should be consid-
ered first when analyzing a cohort study with a relatively
common outcome rather than a regression technique that
estimates adjusted OR. In addition, the considerably nar-
rower CIs obtained from the Poisson model also improve
precision in the parameter estimation of effect. One limita-
tion of the Poisson regressionmodel is the inability to directly
estimate probabilities. In this scenario, the estimated means
from the Poisson regression model were used as surrogates
for probabilities. As a result, obtaining individual predicted
probabilities beyond the bounds of 0 and 1.0 was possible.
These unrealistic predicted probabilities>1.0 could be prob-
lematic when the research objective is to obtain individual
predicted probabilities of disease in predictive research—
diagnostic and prognostic research.4 However, in an etio-
logic study with the focus on estimating a valid RR, the prob-
abilities >1.0 would not pose a problem.4

We simulated additional scenarios to assess the change
in risk estimates when attack rates were reduced (Table 4).
In scenarios 1 to 4, the Poisson regression models consis-
tently indicated a single food type (food 12), leading to the
decisive conclusion that food 12 was the sole source. In con-
trast, when the attack rates were altered, the risk estimates
produced by the logistic regression models were highly vari-
able. In scenarios 1 to 3, a decisive conclusion about the
primary source for the outbreak could not be drawn from
the logistic regression models because they yielded more
than one potential food type, a finding that would prompt
additional investigations into the alternative sources. Fur-
thermore, when the logistic regression model indicated one
food type in scenario 4, this finding contradicted the results
of the Poisson regression model that directly estimated RR.
In scenarios 4 and 5, the logistic models indicated food 4
as the most likely single source, while the Poisson regres-
sion models indicated food 12 as the primary source based
on the meaningful RR; however, in scenario 5, none of the
RRs for the food types remained statistically significant. As
a result, the Poisson regressionmodel for this scenario could
no longer lead to a decisive conclusion about the single food
type.
In multiple simulated scenarios, the Poisson regression

model led to a more decisive conclusion about the single
source of the outbreak. When the attack rates were altered
(Table 4), the Poisson regression model consistently indi-
cated food 12 as the most likely source. In terms of gen-
eralizability, Poisson regression with robust standard errors
should be the statistical method of choice when incidence

of disease can be obtained from cohort data collection
design8,11; however, this design requires relatively complete
data collection that would be burdensome in large-scale out-
breaks. For such outbreaks, the case-control data collection
design is commonly used. For this data collection approach,
the investigation usually starts by encountering a cluster of ill
individuals who seek medical care. Then investigators iden-
tify a control group of non-cases to estimate the risk. OR is
then calculated by logistic regression to estimate risk. In the
scenarios presented in this study, the ORs led to inconsis-
tent conclusions regarding the primary food type responsi-
ble for the single-source outbreak. Thus, in situations where
the outcome is common (>10%), the OR overstates the
effect size and potentially leads to misleading conclusions
as shown in Table 4 and in the literature.8,9,16,20 Sheldrick and
colleagues16 have shown how OR is mathematically related
to RR in the following equation where pA and pB represent
the probabilities of events A and B, respectively:

OR · 1 − pA
1 − pB

= pA
pB

= RR

In situations where pA and pB are close to zero (probability
of rare event), the OR closely estimates the RR. However,
in the case of a common outcome when pA and/or pB are
considerably greater than zero, (1 – pA)/(1 – pB) no longer
approximates 1.0, and OR noticeably overestimates RR.
In this study, we also assessed the feasibility of apply-

ing log-binomial regression by applying this regression tech-
nique to estimate the adjusted RRs in the multivariable
model. However, the multivariable model did not concave to
yield any estimates. The literature suggests that this conver-
gence problem could be encountered when the incidence of
outcome is high.4,8

CONCLUSION
This study illustrates that Poisson regression with robust

standard errors is a decisive and consistent method to esti-
mate risk associated with a single source in an outbreak
when the cohort data collection design is used. However,
in outbreak investigations that use the case-control data
collection design, ORs obtained from logistic regression
could overestimate the risk and potentially influence the
conclusion regarding the source. Consequently, maintaining
awareness of this overestimation when interpreting ORs is
important.
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