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The Role of Mathematical Modeling in
Medical Research:

“Research Without Patients?”
Richard B. Chambers, MSPH

Outcomes Assessment Department, Alton Ochsner Medical Foundation, New Orleans, LA

Computer controlled mathematical models of medical outcomes are commonly found in the current medical
literature. What is less common is an understanding of the methods used to construct such models, leaving the
consumers of medical research to accept the interpretations as presented. A basic knowledge of the concepts used
to generate models will provide the clinician with the insight needed to critically evaluate medical literature based
on mathematical models.
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The development of computerized mathematical
models used to simulate medical outcomes is a
growing area of specialization (1-6).  A current MEDLINE

search of articles using mathematical models yielded 43,764 articles
dating from 1966.  The majority (97%) of the manuscripts including
mathematical models were published only since 1990.  Since 1999,
9219 articles were published.  That is 21% of the medical
manuscripts using mathematical modeling over the last 35 years
published in only this last year.

Clinicians and administrators are accepting the conclusions
drawn from modeling, often without realizing the data are
simulated.  I have often been asked to comment on a journal article
only to realize well into the critique that my clinical colleague did
not know that the tables, charts, and figures were referring to
computer generated cases.  The surprise was best phrased by the
question, “Do you mean that we can do research without patients?”
The answer is, “Yes and no.”

The “yes” part of the answer hinges on the soundness of the
methodologies employed.  Regression methods, the most
commonly seen in modeling, use some variation of the classical
linear model, y=mx+b, according to a transformation or derivation
that plots a math function closely describing the data (1,7,8).  This
is not new to biometrics, but the historical use is to compare two
groups by the parameters of their lines from measured
observations.  Using the derived regression to predict outcomes
in individuals from the same population has always been an
accepted application of regression.  Making the jump to using

mathematical modeling to generate simulated patient
populations, and even model their outcomes for therapies of
the future, is a more difficult stretch.

The “no” part of the answer is rooted in the skepticism to
believe something that was not only not seen and measured by
the reader, but was also not seen or measured by the math
modelers.  Stopping here, however, can deprive the reader of
the benefits of mathematical modeling.  Some problems simply
cannot be solved with a single math function or formula (8).
One solution is to repeat trial and error tests, possibly over many
lifetimes.  Another is to simulate the process in a computer
model.  The keys to the validity of modeling are the known
dependent probabilities, associated variances, and coefficients
determining the relative significance of each factor to the model
(1,7,8).  This means that a model must be based on sound
research, with actual data that are widely accepted as valid by
the medical science community.

Mathematical modeling is presented by various names like
predictive modeling, simulation, or decision analysis.  By far the
most common methodology is the Markov Chain Monte Carlo
simulation.  The two parts of this method each have their own
Mesh headings on MEDLINE, and together they have evolved
into the acronym MCMC (pronounced “mac-mac”).
Understanding the process of a MCMC simulation can go far in
making one a better consumer of mathematical modeling
because it contains the elements basic to modeling by any other
name (8).
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Markov Chain
A Markov Chain, first used in the 1940s to model nuclear

reactions, is simply a series of conditional probabilities in a fixed,
dependent order (1).  Used by physicists for this limited
application, this technique went unknown to the statistical
community until the 1970s when it was generalized to any
application for which one could not derive a single probability
function (1).  The first practical applications appeared in the 1980s
in the fields of neuroscience (1) and economics (7).

The classical example used to teach Markov Chain theory is
the random draw of one of two balls from a bag with replacement.
We begin with unpainted balls.  When an unpainted ball is drawn,
a coin is flipped to decide to paint it red or black.  The ball is
painted and put back in the bag.  When a red ball is drawn, it is
painted black; when a black ball is drawn, it is painted red.
Because the same individual ball can be drawn sequentially, it is
not possible to derive a probability function to predict the
probability of drawing a red ball from the bag at any given trial.
Since there are only two balls, there are three possible
probabilities of drawing a red ball at any one draw.  One could be
drawing from two black, two red, or one of each color at any
given draw.  The possibility at each draw depends upon the entire
sequence of events, from the first draw to the draw in question.
Every time the experiment is repeated, the nth trial can present a
different possibility.  There is the additional possibility of
sequentially drawing the same individual ball in runs of varying
length during the experiment.  Convergence is achieved when
the model looses perceivable dependence on the starting point
(9).  The time prior to convergence is referred to as a “burn in”

period.  Runs of sequential draws of the
same individual ball have more effect on the
chain of events during the burn in period.

A computer simulation was written to
illustrate this example (Table 1).  In the first
Markov Chain, the probability of drawing a
red ball on the draw 4 is 0.50 because after
draw 3 there was one red and one black ball
in the bag.  In the third Markov Chain, the
probability of drawing a red ball on the draw
4 is 1.00, and in the fifth Markov-chain the
same request has a probability of 0.00.

The problem of calculating event
probabilities in this classical example is used
because only modeling can solve it; a global
math function or formula is not possible,
although processes that can be solved by a
global math function can also be modeled.
Usually, to solve a math problem, one would
prefer to solve the single function, but to

test a process or the effect of sequential occurrences at the extremes
of the known variances, it is often useful to develop a model.  This is
where regression methods are employed.  While regression functions
from least-squares methods are used, it is more common to see
Bayesian methods.  Bayesian-derived coefficients are encountered
when outcomes are expressed as probabilities, such as logistic or
probit regression (8).

Monte Carlo
Monte Carlo simulation came into useful application in the same

era as Markov-Chain processes (1, 7).  Monte Carlo simulation is a
series of random draws, simulating an event within the known
parameters of the probability distribution of the event (1, 7).  The
name originated with early developers of the method who used a
roulette wheel to generate random numbers.  The wheel generated
a gambling atmosphere as well, inspiring remembrance of the famous
Monaco city, Monte Carlo (10).

To illustrate the analytical synergy of these methods, and why
the combination is more common than the individual parts alone,
let’s expand the random ball draw example into a Monte Carlo
simulation.  The same software that ran the individual experiments
for the previous example was modified to loop 10,000 times and
write the resulting probabilities of drawing a red ball on draws 1-5,
10, 100, and 1000.  Since the three possible probabilities are 0.0, 0.5,
and 1.0, we know that the average probability will migrate toward
0.5, and that the error term will reach equilibrium.  We do not know,
however, at which draws in the model the mean will reach 0.5 or
the error term will stabilize.

Markov             Probability of choosing  a red ball to draw number:
 chain    1   2 3 4 5          10      100 1000

   1 0.00 0.50 0.00 0.50 1.00 0.50 0.50 0.50
    2 0.00 0.50 0.00 0.50 0.00 0.50 0.50 0.50
   3 0.00 0.00 0.50 1.00 0.50 0.00 0.00 1.00
    4 0.00 0.50 0.00 0.50 0.00 0.50 0.50 0.50
   5 0.00 0.00 0.50 0.00 0.50 1.00 0.00 0.00
   6 0.00 0.00 0.50 1.00 0.50 0.00 0.00 1.00
   7 0.00 0.50 0.50 1.00 0.50 1.00 0.00 0.00
   8 0.00 0.50 0.50 1.00 0.50 1.00 0.00 1.00
   9 0.00 0.50 0.00 0.00 0.50 1.00 1.00 1.00
 10 0.00 0.50 0.00 0.50 0.00 1.00 0.00 1.00

Table 1. The probability of drawing a red ball for draws 1-5,
10, 100, and 1000 for the first 10 individual simulations of the
Markov Chain example. The values used to describe the
possible outcomes in the text are in boldface.
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As shown in Table 2, the mean probability reached 0.5 by the
tenth draw, and the standard deviation (used for the error term)
stabilized at 0.36.  Further analysis will be insightful because there
are two extremes by which these parameters can be reached.  First,
most values can be very near the mean, minimizing the error term.
Second, half of the values can equal the minimum value and half
the maximum value.  This gives an error term of maximum
magnitude, or a “worst case scenario” error term.  Comparing the
frequencies of the possible probabilities between various depths
into the chain can reveal when the model stabilizes.  For this
evaluation, two nonparametric analyses were run.  A sign test, to
pin down when the possible outcomes stabilized symmetrically
around 0.50, and the Kolmogorov-Smirnov Test, a non-parametric
analysis of variance (11). Frequency table analysis using either the
Pearson or Cochran X2 tests is possible, and would yield confirming
results, but the presentation is clearer with the chosen tests.

As shown in Table 3, frequencies of possible outcomes
between draws 2-5 and every other draw are statistically dissimilar.
Draws 10, 100, and 10,000 are statistically similar.  That is, the
model has reached convergence at the tenth draw in the chain, as
proven by the stability of the model through the 1000th draw in
the simulation.  Once convergence is achieved, the model is
assumed to be stable and can be used for the intended purpose
(8,9).

Putting It All Together
A simple medical model will put all of the concepts together.

This is a simplified example to illustrate the concepts; modeling a
specific medical process or outcome requires the inclusion of many
cofactors that make interpretation and presentation more difficult.
First, a theoretical rare disease, D, is always fatal if untreated within
a short time after onset (this allows us to skip time-dependent

covariates).  The first known treatment, A, has a success rate of
0.40 from a study of 200 subjects.  Treatment B was recently tested
against A in a trial of the same size that confirmed the success rate
of A and established the success rate of B at 0.50.  Figure 1 shows
the outcomes of the two groups and the significant p-value of
0.04.  Is this enough information to decide to make treatment B
the treatment of choice?  Remember, disease D is a rare event
and these studies took years and big budgets to coordinate
nationwide data collection.  No additional outcome studies will
be around any time soon.  Furthermore, from only 200 subjects
the success rates of 0.40 and 0.50 have 95% confidence intervals
(0.33-0.47 and 0.43-0.57, respectively).  The 95% confidence
interval is the range in which we expect to find the success rates
for 95 of the next 100 studies of the same size (11).  The observed
overlap may lead one to suspect that null studies are certainly
possible as well as studies reaching the opposite conclusion.

The one clinical trial can be modeled into many trials and
give estimates of the range of outcomes (which we suspect when
we observe the confidence intervals) and the likelihood of reaching
the same conclusion in successive clinical trials.  The simulation
can assign the outcome four different ways by two different
divisions.  The first division is the object of the simulation, which
can be either individuals or populations.  A model based on
individuals is a more lifelike simulation and will yield more
variation.  Population-based models might be better suited for
public health or community medicine applications.  From our
example, treatment group A can have a success rate of 0.40, but
any patient in treatment group A cannot have a success rate of
0.40.  Each patient’s success rate must be either 0 or 1.  The
assignment of the 0 or 1 is the next division of strategy.  If the
confidence interval or other measure of variance is not known,
each unit can have a random number between 0 and 1 generated
and tested against the known rate (0.40 for group A in our
example).  If the random number for a unit is below 0.40, the unit
is a success.  If the random number is above 0.40, the unit is a
failure.  Since the error term is not known, this method is said to
be a parameter estimation method and is called Gibbs sampling
(8,12).  (The name comes from the first use of this strategy in
pixel imaging where the Gibbs probability distribution is used [8].)
In assigning a binary outcome, this method yields a larger error
term, but in applications where the error term is already at an
extreme of small or large, this is not a concern.  It is the only
choice when the error term is unknown or a parameter such as
sample size or a highly disputed denominator (as occurs in national
databases or national surveillance) is encountered.  In our example,
the error terms are known, so, rather than compare the generated
random number to 0.40, it can be compared to a rate randomly
selected from the range of the confidence interval.  In this most

Table 2. Simple descriptive statistics of the
probability of drawing a red ball for draws 1-5, 10,
100, 1000 for the Monte Carlo example of n=10,000.

   Draw Number Mean Standard Median
Deviation

1 0.00 0.00 0.00
2 0.25 0.25 0.00
3 0.37 0.33 0.50
4 0.44 0.35 0.50
5 0.47 0.35 0.50
10 0.50 0.36 0.50
100 0.50 0.36 0.50
1000 0.50 0.36 0.50
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realistic simulation, we are comparing a randomly generated
number between 0 and 1 to a randomly generated number
between the lower and upper bounds of the 95% confidence
interval to decide whether the case is a success or a failure.  In
the case of population-based simulation, the population’s success
rate is drawn from the range of the confidence interval.

The results of our MCMC simulation are summarized in Table
4.  Of 100 simulations of the known clinical trial, 91 observed
that treatment B had a better success rate than treatment A.  Of
the simulations with observed outcomes confirming the clinical
trial, only 50 (55%) had significant p-values (mean = 0.21, standard
deviation = 0.29).  Comparing the studies demonstrating the
superiority of treatment B with studies refuting that finding for
statistical significance with a Fisher’s exact test gives a p-value of
0.0013 (Figure 2).  The interpretation is that a study refuting the
superiority of treatment B is less likely to be statistically significant.
The model gives us reason to not be so confident about the

Figure 1. A comparison of hypothetical treatments, of
sample size 200, for a hypothetical disease for the
medical model example. The chi-square test (X2) =4.04
with 1 degree of freedom yields a p-value of 0.04. The
risk ratio of treatment failure in treatment A relative to B
is 1.2 with a 95% confidence interval of 1.03 to 1.39. The
statistical inference of this single study would be that
treatment B was superior to treatment A.
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Comparing Draw         To Draw  Sign Test   Kolmogorov-    Wilcoxon Signed
  p-values   Smirnov Test  Ranks Test

p-values  p-values

2 3 <0.0001 <0.0001 <0.0001
2 4 <0.0001 <0.0001 <0.0001
2 5 <0.0001 <0.0001 <0.0001
2 10 <0.0001 <0.0001 <0.0001
2 100 <0.0001 <0.0001 <0.0001
2 1000 <0.0001 <0.0001 <0.0001
3 4 <0.0001 <0.0001 <0.0001
3 5 <0.0001 <0.0001 <0.0001
3 10 <0.0001 <0.0001 <0.0001
3 100 <0.0001 <0.0001 <0.0001
3 1000 <0.0001 <0.0001 <0.0001
4 5 <0.0001 <0.0001 <0.0001
4 10 <0.0001 <0.0001 <0.0001
4 100 <0.0001 <0.0001 <0.0001
4 1000 <0.0001 <0.0001 <0.0001
5 10 <0.0001 <0.0001 <0.0001
5 100 <0.0001 <0.0001 <0.0001
5 1000 <0.0001 <0.0001 <0.0001

10 100 0.4230 0.9991 0.3150
10 1000 0.4165 0.9999 0.3081

100 1000 0.9999 0.9999 0.9999

Table 3. Statistical comparison of frequencies of possible outcomes between draws. P-values greater
than 0.1 lead to the conclusion that the frequencies of possible outcomes are not different between
these draws.
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finding in the clinical trial.  While I might personally prefer to be on
treatment B if I had disease D, I can predict that if the clinical trial
were repeated 100 times nine research centers out of the 100 would
not want to switch from treatment A at all.

Discussion
Modeling is increasingly common in the medical literature and

is more often becoming the basis for managed care policy (3-6).  It is
most commonly encountered for predicting outcomes, as in the
simple example used in this paper (13-15).  Predicting the way an
intervention or a technology might drive demand on a medical system
is another variant of this use (16).  This is helpful when limitations
like a rare event prohibit repeating actual studies or expanding
research on actual patients.

A novel application for mathematical modeling is the
determination of sample size requirement (17).  Estimates of the

population parameters can direct a simulation that increases
one patient at a time until a statistically significant difference is
detected between the experimental groups.  A series of such
simulations can give investigators a range and midpoint of a
sample size that should satisfy the test of their hypothesis.  This
is most useful in experimental designs with categorical,
nonparametric, or otherwise non-normally distributed data.  In
some of these circumstances there are no functions to
determine sample size, and where math functions are
established the simulation method usually predicts a much
more reasonable sample size requirement.

Another innovative use of MCMC is estimation of missing
data points (18).  Most strategies to replace missing values use
a point of central tendency like the mean or median.  Such
strategies usually have cutoff criteria for the minimum allowable
proportion of missing fields to allow “filling in.”  Usually more

Figure 2. Status of statistical
significance between simulations
with confirming results to those
refuting the superiority of
treatment B. The p-value of the
Fisher’s exact test of this
comparison is 0.0013. The
statistical inference is that
statistical significance is dependent
on (more likely) confirming the
superiority of B.

Table 4. Simple descriptive statistics of the medical model
example comparing hypothetical treatments in a
simulation of n=100 clinical trials.

Significant Non-Significant Total

Confirming B>A 50 41 91
Refuting B>A 0 9 9

Mean Standard Deviation Median

p-value 0.21 0.29 0.06
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than 50% of the data for the case and the variable (throughout all
cases) must be present.  Such homogenous value replacement
effectively reduces the variance.  MCMC estimated values preserve
the actual variance.

In all of the applications, math models in medicine are a reality
to be faced.  The impact of this, or any other, research methodology
will only be to the betterment of patient care if the medical
community at large undertakes a basic understanding, guiding the
application of findings based on reasonable confidence after critical
review.  Modeling can answer otherwise unanswerable questions
and greatly expand our knowledge base from actual study data.  It
can do all of this efficiently and risk-free, without real patients.
However, all logical and mathematical components of a model
must be based on valid research of actual patients.


