Skip to main content
Log in

Regulation of cellular gene expression and function by the human immunodeficiency virus type 1 tat protein

  • Review
  • Published:
Journal of Biomedical Science

Abstract

The human immunodeficiency virus type 1 Tat protein is a potent activator of viral gene expression and replication. Tat can also affect the expression of cellular genes including cytokines, extracellular matrix proteins, enzymes degrading the basement membrane and cell cycle-related proteins, and can regulate cellular functions such as growth, migration and angiogenesis. In addition, under certain circumstances, Tat may have tumorigenic effects. These activities of Tat appear to be mediated by different mechanisms such as the transactivation of cellular gene expression or the interaction of extracellular Tat with the cell membrane through both receptor-mediated and nonreceptor-mediated interactions. Deregulation of cellular gene expression and function by Tat cause abnormalities which may participate in AIDS pathogenesis and in the development of AIDS-associated disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albini A, Barillari G, Benelli R, Gallo RC, Ensoli B. Tat, the human immunodeficiency virus type 1 regulatory protein has angiogenic properties. Proc Natl Acad Sci USA, in press.

  2. Albini A, Fontanini G, Masiello L, Tacchetti C, Bigini D, Luzzi P, Noonan DM, Stetler-Stevenson WG. Angiogenic potential in vivo by Kaposi's sarcoma cell-free supernatants and HIV-1tat product: inhibition of KS-like lesions by tissue inhibitor of metalloproteinase-2. AIDS 8:1237–1244;1994.

    PubMed  Google Scholar 

  3. Allen JB, Wong HL, Guyre PM, Simon GL, Wahl SM. Association of circulating receptor FcrRIII-positive monocytes in AIDS patients with elevated levels of transforming growth factor-β. J Clin Invest 87:1773–1779;1991.

    PubMed  Google Scholar 

  4. Arya SK, Guo C, Josephs SF, Wong-Staal F. Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 229:69–73;1985.

    PubMed  Google Scholar 

  5. Barillari G, Buonaguro L, Fiorelli V, Hoffman J, Michaels F, Gallo RC, Ensoli B. Effects of cytokines from activated immune cells on vascular cell growth and HIV-1 gene expression: implications for AIDS-Kaposi's sarcoma pathogenesis. J Immunol 149:3727–3734;1992.

    PubMed  Google Scholar 

  6. Barillari G, Gendelman R, Gallo RC, Ensoli B. The Tat protein of human immunodeficiency virus type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD sequence. Proc Natl Acad Sci USA 90:7941–7945;1993.

    PubMed  Google Scholar 

  7. Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Charmaret S, Gruest J, Dauget C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immunodeficiency syndrome. Science 220:868–871;1983.

    PubMed  Google Scholar 

  8. Benjouad A, Mabrouk K, Moulard M, Gluckman J-C, Rochat H, Rietschoten JV, Sabatier JM. Cytotoxic effect on lymphocytes of Tat from human immunodeficiency virus (HIV-1). FEBS J 319:119–124;1993.

    Article  Google Scholar 

  9. Berkhout B, Jeang KT. Tat transactivates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–282;1989.

    Article  PubMed  Google Scholar 

  10. Berkhout B, Gatignol A, Rabson AB, Jeang KT. TAR-independent activation of the HIV-1 LTR: evidence that Tat requires specific regions of the promoter. Cell 62:757–767;1990.

    Article  PubMed  Google Scholar 

  11. Brake DA, Debouck C, Biesecker G. Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, Tat. J Cell Biol 111:1275–1281;1990.

    Article  PubMed  Google Scholar 

  12. Breen EC, Rezai AR, Nakajima K, Beall GN, Mitsuyasu RT, Hirano T, Kishimoto T, Martinez-Maza O. Infection with HIV is associated with elevated IL-6 levels and production. J Immunol 144:480–484;1990.

    PubMed  Google Scholar 

  13. Buonaguro L, Barillari G, Chang HK, Bohan CA, Kao V, Morgan R, Gallo RC, Ensoli B. Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. J Virol 66:7159–7167;1992.

    PubMed  Google Scholar 

  14. Buonaguro L, Buonaguro FM, Giraldo G, Ensoli B. The human immunodeficiency virus type 1 Tat protein transactivates tumor necrosis factor beta gene expression through a TAR-like structure. J Virol 68:2677–2682;1994.

    PubMed  Google Scholar 

  15. Caputo A, Sodroski JG, Haseltine WA. Constitutive expression of HIV-1 Tat protein in human Jurkat T cells using a BK virus vector. J Acquir Immune Defic Syndr 3:372–379;1990.

    PubMed  Google Scholar 

  16. Coffey RJ Jr, Derynck R, Wilcox JN, Bringman TS, Goustin AS, Moses HL, Pittelkow MR. Production and autoinduction of transforming growth factor-α in human keratinocytes. Nature (London) 328:817–820;1987.

    Article  Google Scholar 

  17. Crawford D, Zbinden I, Amstad P, Cerutti P. Oxidant stress induces the proto-oncogenes c-fos and c-myc in mouse epidermal cells. Oncogene 3:27–32;1988.

    Google Scholar 

  18. Cupp C, Taylor JP, Khalili K, Amini S. Evidence for stimulation of the transforming growth factor β1 promoter by HIV-1 Tat in cells derived from CNS. Oncogene 8:2231–2236;1993.

    PubMed  Google Scholar 

  19. Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA. The trans-activator gene of the human T-cell lymphotrophic virus type III is required for replication. Cell 44:941–947;1986.

    Article  PubMed  Google Scholar 

  20. Derynck R. The physiology of transforming growth factor-α. Adv Cancer Res 58:27–52;1992.

    PubMed  Google Scholar 

  21. Devary Y, Gottlieb RA, Lau LF, Karin M. Rapid and preferential activation of the c-jun gene during the mammalian UV response. Mol Cell Biol 11:2804–2811;1991.

    PubMed  Google Scholar 

  22. Edery I, Petryshyn R, Sonenberg N. Activation of double stranded RNA-dependent kinase (dsI) by the TAR region of HIV-1 mRNA: a novel translational control mechanism. Cell 56:303–312;1989.

    Article  PubMed  Google Scholar 

  23. Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature (London) 345:84–86;1990.

    Article  Google Scholar 

  24. Ensoli B, Barillari G, Gallo RC. Pathogenesis of AIDS associated KS. Hematol Oncol Clin North Am 5:281–295;1991.

    PubMed  Google Scholar 

  25. Ensoli B, Buonaguro L, Barillari G, Fiorelli V, Gendelman R, Morgan RA, Wingfield P, Gallo RC. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 67:277–287;1993.

    PubMed  Google Scholar 

  26. Ensoli B, Gendelman R, Markham P, Fiorelli V, Colombini S, Raffeld M, Cafaro A, Chang HK, Brady JN, Gallo RC. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature (London) 371:674–680;1994.

    Article  Google Scholar 

  27. Fan J, Bass HZ, Fahey JL. Elevated IFN-gamma and decreased IL-2 gene expression are associated with HIV-1 infection. J Immunol 152:5031–5037;1993.

    Google Scholar 

  28. Feinberg MB, Baltimore D, Frankel AD. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc Natl Acad Sci USA 88:4045–4049;1991.

    PubMed  Google Scholar 

  29. Feng S, Holland EC. HIV-1 tat trans-activation requires the loop sequence within the TAR. Nature 334:165–167;1988.

    Article  PubMed  Google Scholar 

  30. Fisher AG, Feinberg MB, Josephs SF, Harper ME, Marselle G, Reyes MA, Gonda MA, Aldovini A, Debouk C, Gallo RC, Wong-Staal F. The trans-activator gene of HTLV-III is essential for virus replication. Nature (London) 320:367–371;1986.

    Article  Google Scholar 

  31. Flores SC, Marecki JC, Harper KP, Bose SK, Nelson SK, McCord JM. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci USA 90:7632–7636;1993.

    PubMed  Google Scholar 

  32. Folks TM, Justement J, Kinter A, Dinarello CA, Fauci AS. Cytokine-induced expression of HIV-1 in a chronically infected promonocytic cell line. Science 238:800–802;1987.

    Google Scholar 

  33. Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauci AS. Tumor necrosis factor α induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci USA 86:2365–2368;1989.

    PubMed  Google Scholar 

  34. Frankel AD, Bredt D, Pabo C. Tat protein from immunodeficiency virus forms a metal-linked dimer. Science 240:70–73;1988.

    PubMed  Google Scholar 

  35. Frankel AD, Pabo CO. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55:1189–1193;1988.

    Article  PubMed  Google Scholar 

  36. Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, Safai B, White G, Foster P, Markham P. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224:500–503;1984.

    PubMed  Google Scholar 

  37. Garcia JA, Harrich D, Soultanakis E, Wu F, Mitsuyasu R, Gaynor RB. Human immunodeficiency virus type 1 LTR TATA and TAR region sequences required for transcriptional regulation. EMBO J 8:765–778;1989.

    PubMed  Google Scholar 

  38. Gatignol A, Kumar A, Rabson A, Jeang KT. Identification of cellular proteins that bind to the human immunodeficiency virus type 1 trans-activation-responsive TAR element RNA. Proc Natl Acad Sci USA 86:7828–7832;1989.

    PubMed  Google Scholar 

  39. Gaya A, da la Calle O, Yague J, Alsinet E, Fernandez MD, Romero M, Faregat V, Martorell J, Vives J. IL-4 inhibits synthesis and IL-2-induced up-regulation of IL-2Rα but not IL-2β chain in CD4+ human T cells. J Immunol 146:4209–4214;1991.

    PubMed  Google Scholar 

  40. Gaynor R, Soultanakis E, Kuwabara M, Garcia J, Sigman DS. Specific binding of HeLa cell nuclear protein to RNA sequences in the human immunodeficiency virus transactivating region. Proc Natl Acad Sci USA 86:4858–4862;1989.

    PubMed  Google Scholar 

  41. Gentz R, Chen CH, Rosen CA. Bioassay for trans-activation using purified human immunodeficiency virustat-encoded protein: transactivation requires mRNA synthesis. Proc Natl Acad Sci USA 86:821–824;1989.

    PubMed  Google Scholar 

  42. Gerlach H, Lieberman H, Bach R, Godman G, Brett J, Stern D. Enhanced responsiveness of endothelium in the growing/motile state to tumor necrosis factor/cachetin. J Exp Med 170:913–931;1989.

    Article  PubMed  Google Scholar 

  43. Goey H, Keller JR, Back T, Longo DL, Ruscetti FW, Wiltrout RH. Inhibition of early murine hemopoietic progenitor cell proliferation after in vivo locoregional administration of transforming growth factor-β 1. J Immunol 143:877–880;1989.

    PubMed  Google Scholar 

  44. Guerne PA, Sublet A, Lotz M. Growth factor responsiveness of human articular chondrocytes: distinct profiles in primary chondrocytes, sucultured chondrocytes and fibroblasts. J Cell Physiol 158:476–484;1994.

    Article  PubMed  Google Scholar 

  45. Harrich D, Garcia J, Mitsuyasu R, Gaynor R. TAR independent activation of the human immunodeficiency virus in phorbol ester stimulated T lymphocytes. EMBO J 9:4417–4423;1990.

    PubMed  Google Scholar 

  46. Haseltine WA. Molecular biology of the human immunodeficiency virus type 1. FASEB J 5:2349–2360;1991.

    PubMed  Google Scholar 

  47. Hauber J, Cullen BR. Mutational analysis of the trans-activation-responsive region of the human immunodeficiency virus type 1 long terminal repeat. J Virol 62:673–679;1988.

    PubMed  Google Scholar 

  48. Hauber J, Malim M, Cullen B. Mutational analysis of the conserved basic domain of human immunodeficiency virus Tat protein. J Virol 63:1181–1187;1989.

    PubMed  Google Scholar 

  49. Haverkos HW, Drotman DP, Morgan M. Prevalence of Kaposi's sarcoma among patients with AIDS. N Engl J Med 312:1518;1985.

    Google Scholar 

  50. Hayashi SI, Gimble JM, Henley A, Ellingsworth LR, Kincade PW. Differential effects of TGFβ 1 on lymphohemopoiesis in long-term bone marrow cultures. Blood 74:1711–1717;1989.

    PubMed  Google Scholar 

  51. Helland DE, Welles JL, Caputo A, Haseltine WA. Transcellular transactivation by the human immunodeficiency virus type 1 Tat protein. J Virol 65:4547–4549;1991.

    PubMed  Google Scholar 

  52. Ho DD, Rota TR, Schooley RT, Kaplan JC Jr, Allan D, Groopman JE, Resnick L, Felsenstein D, Andrews CA, Hirsch MS. Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N Engl J Med 313:1493–1497;1985.

    PubMed  Google Scholar 

  53. Hober D, Haque A, Wattre P, Beaucaire G, Mouton Y, Capron A. Production of tumor necrosis factor α(TNFα) and interleukin-1 (IL-1) in patients with AIDS. Enhanced levels of TNF α is related to a higher cytotoxic activity. Clin Exp Immunol 78:329–333;1989.

    PubMed  Google Scholar 

  54. Hofman FM, Wright AD, Dohadwala MM, Wong-Staal F, Walker SM. Exogenous tat protein activates human endothelial cells. Blood 82:2774–2780;1993.

    PubMed  Google Scholar 

  55. Howcroft TK, Strebel K, Martin MA, Singer DS. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science 260:1320–1322;1993.

    PubMed  Google Scholar 

  56. Iwamoto GK, Konicek SA, Twigg HLIII. Modulation of accessory cell function and interleukin-6 production by the HIV-1tat gene. Am J Respir Cell Mol Biol 10:580–585;1994.

    PubMed  Google Scholar 

  57. Jelinek DF, Lipsky PE. Inhibitory effects of IL-4 on human B cell responsiveness. J Immunol 141:164–173;1988.

    PubMed  Google Scholar 

  58. Jones KA, Kadonaga JT, Luciw PA, Tijan R. Activation of the AIDS retrovirus promoter by the cellular transcription factor Sp1. Science 232:755–759;1986.

    PubMed  Google Scholar 

  59. Judware R, Li J, Petryshyn R. Inhibition of the dsRNA-dependent protein kinase by a peptide derived from the human immunodeficiency virus type 1 Tat protein. J Interferon Res 13:153–160;1993.

    PubMed  Google Scholar 

  60. Kaplan MH, Susin M, Pahwa SG, Fetten J, Allen SL, Lichtman S, Sarngadharan MG, Gallo RC. Neoplastic complications of HTLV-III infection. Lymphomas and solid tumors. Am J Med 82:389–396;1987.

    Article  PubMed  Google Scholar 

  61. Kehrl JH, Alvarez-Mon M, Delsing GA, Fauci AS. Lymphotoxin is an important T cell-derived growth factor for human B cells. Science 242:1144–1146;1987.

    Google Scholar 

  62. Kekow J, Wachsman W, McCutchan JA, Cronin M, Carson DA, Lotz M. Transforming growth factor β and non-cytopathic mechanisms of immunodeficiency in human immunodeficiency virus infection. Proc Natl Acad Sci USA 87:8321–8325;1990.

    PubMed  Google Scholar 

  63. Kim CM, Vogel J, Jay G, Rhim JS. The HIVtat gene transforms human keratinocytes. Oncogene 7:1525–1529;1992.

    PubMed  Google Scholar 

  64. Kishimoto T. The biology of IL-6. Blood 74:1–10;1989.

    PubMed  Google Scholar 

  65. Knowles DM, Chamulak G, Subar M, Pellicci PG, Dugan M, Burke JS, Raphael B, Dalla-Favera R. Clinicopathologic, immunophenotypic, and molecular genetic analysis of AIDS-associated lymphoid neoplasia. Clinical and biologic implications. Pathol Annu 23:33–67;1988.

    PubMed  Google Scholar 

  66. Koenig S, Gendelman HE, Orenstein JM, Dal Canto MC, Pezeshkpour GH, Yungbluth M, Janotta F, Aksamit A, Martin MA, Fauci AS. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089–1093;1986.

    Google Scholar 

  67. Kolson DL, Buchhalter J, Collman R, Hellmig B, Farrell CF, Debouck C, Gonzalez-Scarano F. HIV-1 Tat alters normal organization of neurons and astrocytes in primary rodent brain cell cultures: RGD sequence dependence. AIDS Res Hum Retroviruses 9:677–685;1993.

    PubMed  Google Scholar 

  68. Kostura M, Mathews MB. Purification and activation of the double-stranded RNA-dependent eIF-2 kinase DAI. Mol Cell Biol 9:1576–1586;1989.

    PubMed  Google Scholar 

  69. Kuppuswamy M, Subramanian T, Srinivasan A, Chinnadurai G. Multiple functional domains of Tat, thetrans-activator of HIV-1 defined by mutational analysis. Nucleic Acids Res 17:3551–3561;1989.

    PubMed  Google Scholar 

  70. Lahdevirta J, Maury CPJ, Teppo AM, Repo H. Elevated levels of circulating cachectin/tumor necrosis factor in patients with acquired immunodeficiency syndrome. Am J Med 85:289–291;1988.

    Article  PubMed  Google Scholar 

  71. Laurence J, Astrin SM. Human immunodeficiency virus induction of malignant transformation in human B lymphocytes. Proc Natl Acad Sci USA 88:7635–7639;1991.

    PubMed  Google Scholar 

  72. Lazdins JK, Klimkait T, Alteri E, Walker M, Woods-Cook K, Cox D, Bilbe G, Shipman R, Cerletti N, McMaster G. TGF-β up-regulator of HIV replication in macrophages. Res Virol 142:239–242;1991.

    Article  PubMed  Google Scholar 

  73. Lazdins JK, Klimkait T, Woods-Cook K, Walker M, Alteri E, Cox D, Cerletti N, Shipman R, Bilbe G, McMaster G. In vitro effect of transforming growth factor-β on progression of HIV-1 infection in primary mononuclear phagocytes. J Immunol 147:1201–1207;1991.

    PubMed  Google Scholar 

  74. Leeuwenberg JF, Jeunhomme TM, Buurman WA. Induction of an activation antigen on human endothelial cells in vitro. Eur J Immunol 19:715–720;1989.

    PubMed  Google Scholar 

  75. Lepe-Zuniga JL, Mansell PWA, Remvig L. Idiopathic production of interleukin-1 in the acquired immunodeficiency syndrome. J Clin Microbiol 25:1695–1700;1987.

    PubMed  Google Scholar 

  76. Levin D, London IM. Regulation of protein synthesis: activation by double-stranded RNA of a protein kinase that phosphorylates eukaryotic initiation factor 2. Proc Natl Acad Sci USA 75:1121–1125;1978.

    PubMed  Google Scholar 

  77. Lobb RR, Chi-Rosso G, Leone DR, Rosa MD, Bixler S, Newman BA, Lubowsky S, Benjamin CD, Dougas IG, Goelz SE, Hession C, Chow EP. Expression and functional characterization of a soluble form of endothelial leukocyte adhesion molecule 1. J Immunol 147:124–129;1991.

    PubMed  Google Scholar 

  78. Locksley RM, Heinzel FP, Shepard HM, Agosti J, Eessalu TE, Aggarwal BB, Harlan JM. Tumor necrosis factors alpha and beta differ in their capacities to generate interleukin 1 release from human endothelial cells. J Immunol 139:1891–1895;1987.

    PubMed  Google Scholar 

  79. Lotz M, Kekow J, Cronin MT, McCutchan JA, Clark-Lewis I, Carson DA, Wachsman W. Induction of transforming growth factor-β (TGFβ) by HIV-1 Tat; a noncytopathic pathway of immunodeficiency in HIV infection. FASEB J 4:1861(abstr.);1990.

    Google Scholar 

  80. Lotz M, Clark-Lewis I, Ganu V. HIV-1 transactivator protein Tat induces proliferation and TGFβ expression in human articular chondrocytes. J Cell Biol 124:365–371;1994.

    Article  PubMed  Google Scholar 

  81. Mace K, Gazzolo L. Expression of the Tat protein of HIV1 in human promonocytic U937 cells. Res Virol 144:27–34;1993.

    PubMed  Google Scholar 

  82. Marcuzzi A, Weinberger J, Weinberger OK. Transcellular activation of the human immunodeficiency virus type 1 long terminal repeat in cocultured lymphocytes. J Virol 66:4228–4232;1992.

    PubMed  Google Scholar 

  83. Matsuyama T, Hamamoto Y, Soma G-I, Mizuno D, Yamamoto N, Kobayashi N. Cytocidal effect of tumor necrosis factor on cells chronically infected with human immunodeficiency virus (HIV): enhancement of HIV replication. J Virol 63:2504–2509;1989.

    PubMed  Google Scholar 

  84. Merrick WC. Overview: mechanism of translation initiation in eukaryotes. Enzyme 44:7–16;1990.

    PubMed  Google Scholar 

  85. Merrill JE, Chen IS. HIV, macrophages, glial cells, and cytokines in AIDS nervous system disease. FASEB J 5:2391–2397;1991.

    PubMed  Google Scholar 

  86. Merrill JE, Koyanagi Y, Chen IS. Interleukin-1 and tumor necrosis factor alpha can be induced from mononuclear phagocytes by human immunodeficiency virus type 1 binding to the CD4 receptor. J Virol 63:4404–4408;1989.

    PubMed  Google Scholar 

  87. Milani D, Zauli G, Neri LM, Marchisio M, Previati M, Capitani S. Influence of the human immunodeficiency virus type 1 Tat protein on the proliferation and differentiation of PC12 rat pheochromocytoma cells. J Gen Virol 74:2587–2594;1993.

    PubMed  Google Scholar 

  88. Miles SA, Rezai AR, Salazar-Gonzalez JF, VanderMeyden M, Stevens RH, Logan DM, Mitsuyasu RT, Taga T, Kishimoto T, Martinez-Maza O. AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc Natl Acad Sci USA 87:4068–4072;1990.

    PubMed  Google Scholar 

  89. Mitchell PG, Cheung HS. Tumor necrosis factor alpha and epidermal growth factor regulation of collagenase and stromelysin in adult porcine articular chondrocytes. J Cell Physiol 149:132–140;1991.

    Article  PubMed  Google Scholar 

  90. Mueller SG, Paterson AJ, Kudlow JE. Transforming growth factor-α in arterioles: cell surface processing of its precursor by elastases. Mol Cell Biol 10:4596–4602;1990.

    PubMed  Google Scholar 

  91. Muesing MA, Smith DH, Capon DJ. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48:691–701;1987.

    Article  PubMed  Google Scholar 

  92. Nabell LM, Raja RH, Sayeski PP, Paterson AJ, Kudlow JE. Human immunodeficiency virus 1 Tat stimulates transcription of the transforming growth factor α gene in an epidermal growth factor-dependent manner. Cell Growth Differ 5:87–93;1994.

    PubMed  Google Scholar 

  93. Nawroth PP, Bank I, Handley D, Cassimeris J, Chess L, Stein D. Tumor necrosis factor/cachetin interacts with endothelial cell receptors to induce release of interleukin 1. J Exp Med 163:1363–1375;1986.

    Article  PubMed  Google Scholar 

  94. Nose K, Shibanuma M, Kikuchi K, Kageyama H, Sakiyama S, Kuroki T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur J Biochem 201:99–106;1991.

    Article  PubMed  Google Scholar 

  95. Osborn L, Kunkel S, Nabel GJ. Tumor necrosis factor α and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kB. Proc Natl Acad Sci USA 86:2336–2340;1989.

    PubMed  Google Scholar 

  96. Paul WE. Interleukin-4: a prototypic immunoregulatory lymphokine. Blood 77:1859–1870;1991.

    PubMed  Google Scholar 

  97. Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Annu Rev Biochem 56:727–777;1987.

    Article  PubMed  Google Scholar 

  98. Pober JS. Effects of tumor necrosis factor and related cytokines on vascular endothelial cells. Ciba Found Symp 131:170–184;1987.

    PubMed  Google Scholar 

  99. Pocsik E, Higuchi M, Aggarwal BB. Down-modulation of cell surface expression of p80 form of the tumor necrosis factor receptor by human immunodeficiency virus-1 tat gene. Lymphokine Cytokine Res 11:317–325;1992.

    PubMed  Google Scholar 

  100. Poli G, Bressler P, Kinter A, Duh E, Timmer WC, Rabson A, Justement JS, Stanley S, Fauci AS. Interleukin 6 induces human immunodeficiency virus expression in infected monocytic cells alone and in synergy with tumor necrosis factor α by transcriptional and post-transcriptional mechanisms. J Exp Med 172:151–158;1990.

    Article  PubMed  Google Scholar 

  101. Poli G, Kintner A, Justement JS, Kehrl JH, Bressler P, Stanley S, Fauci AS. Tumor necrosis factor α functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc Natl Acad Sci USA 87:782–785;1990.

    PubMed  Google Scholar 

  102. Popovic M, Samgadharan MG, Read E, Gallo RC. Detection, isolation and continuous production of cytopathic retroviruses (HTLV-III) from patients with AIDS and pre-AIDS. Science 224:497–500;1984.

    Google Scholar 

  103. Pumarola-Sune T, Navia BA, Cordon-Cardo C, Cho ES, Price RW. HIV antigen in the brains of patients with the AIDS dementia complex. Ann Neurol 21:490–496;1987.

    Article  PubMed  Google Scholar 

  104. Puri RK, Aggarwal BB. Human immunodeficiency virus type 1tat gene up-regulates interleukin 4 receptors on a human B-lymphoblastoid cell line. Cancer Res 52:3787–3790;1992.

    PubMed  Google Scholar 

  105. Purvis SF, Georges DL, Williams TM, Lederman MM. Suppression of interleukin-2 and interleukin-2 receptor expression in Jurkat cells stably expressing the human immunodeficiency virus Tat protein. Cell Immunol 144:32–42;1992.

    Article  PubMed  Google Scholar 

  106. Rappaport J, Lee SJ, Khalili K, Wong-Staal F. The acidic amino-terminal region of the HIV-1 Tat protein constitutes an essential activating domain. New Biol 1:101–110;1989.

    PubMed  Google Scholar 

  107. Ratner L, Polmar SH, Paul N, Ruddle N. Cytotoxic factors secreted by cells infected by human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 3:147–154;1987.

    PubMed  Google Scholar 

  108. Rhim JS, Jay G, Arnstein P, Price FM, Sanford KK, Aaronson SA. Neoplastic transformation of human epidermal keratinocytes by AD12-SV40 and Kirsten sarcoma viruses. Science 227:1250–1252;1985.

    PubMed  Google Scholar 

  109. Rieckmann P, Poli G, Fox CH, Kehrl JH, Fauci AS. Recombinant gp120 specifically enhances tumor necrosis factor-alpha production and Ig secretion in B lymphocytes from HIV-infected individuals but not from seronegative donors. J Immunol 147:2922–2927;1991.

    PubMed  Google Scholar 

  110. Rosen CA, Sodroski JG, Haseltine WA. The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41:813–823;1985.

    Article  PubMed  Google Scholar 

  111. Roy S, Delling U, Chen C-H, Rosen CA, Sonenberg N. A bulge structure in HIV-1 TAR RNA is required for tat binding and tatmediated trans-activation. Genes Dev 4:1365–1373;1990.

    PubMed  Google Scholar 

  112. Roy S, Katze MG, Parkin NT, Edery I, Hovanessian AG, Sonenberg N. Control of the interferon-induced 68-kilodalton protein kinase by the HIV-1tat gene product. Science 247:1216–1219;1990.

    PubMed  Google Scholar 

  113. Roy S, Parkin NT, Rosen C, Itovitch J, Sonenberg N. Structural requirements fortrans activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression bytat: importance of base pairing, loop sequence, and bulges in thetat-responsive sequence. J Virol 64:1402–1406;1990.

    PubMed  Google Scholar 

  114. Roy S, Agy M, Hovanessian AG, Sonenberg N, Katze MG. The integrity of the stem structure of human immunodeficiency virus type 1 tat-responsive sequence RNA is required for interaction with the interferon-induced 68,000 Mr protein kinase. J Virol 65:632–640;1991.

    PubMed  Google Scholar 

  115. Ruben S, Perkins A, Purcell R, Joung K, Sia R, Burghoff R, Haseltine W, Rosen C. Structural and functional characterization of human immunodeficiency virus Tat protein. J Virol 63:1–8;1989.

    PubMed  Google Scholar 

  116. Ruddle NH, Bergman CM, McGrath KM, Lingenheld EG, Grunnet ML, Padula SJ, Clark RB. An antibody to lymphotoxin and tumor necrosis factor prevents transfer of experimental allergic encephalomyelitis. J Exp Med 172:1193–1200;1990.

    Article  PubMed  Google Scholar 

  117. Sabatier J-M, Vives E, Mabrouk K, Benjouad A, Rochat H, Duval A, Hue B, Bahraoui E. Evidence for neurotoxic activity oftat from human immunodeficiency virus type 1. J Virol 65:961–967;1991.

    PubMed  Google Scholar 

  118. Safai B, Sarngadharan MG, Groopman JE, Arnett K, Popovic M, Sliski A, Schupbach J, Gallo RC. Seroepidemiological studies of human T-lymphotropic retrovirus type III in acquired immunodeficiency syndrome. Lancet i:1438–1440;1984.

    Article  Google Scholar 

  119. Sanceau J, Wijdenes J, Revel M, Wietzerbin J. IL-6 and IL-6 receptor modulation by IFN-gamma and tumor necrosis factor-alpha in human monocytic cell line (THP-1). Priming effect of IFN-gamma. J Immunol 147:2630–2637;1991.

    PubMed  Google Scholar 

  120. Sariban E, Mitchell T, Kufe D. Expression of the c-fms proto-oncogene during human monocytic differentiation. Nature (London) 316:64–66;1985.

    Article  Google Scholar 

  121. Sarngadharan MG, Popovich M, Bruch L, Schupbach J, Gallo RC. Antibodies reactive with human T-lymphotropic retroviruses (HTLV-III) in the serum of patients with AIDS. Science 224:506–508;1984.

    Google Scholar 

  122. Sastry KJ, Reddy RHR, Pandita R, Totpal K, Aggarwal BB. HIV-1tat gene induces tumor necrosis factor-β (lymphotoxin) in a human B-lymphoblastoid cell line. J Biol Chem 265:20091–20093;1990.

    PubMed  Google Scholar 

  123. Scala G, Ruocco MR, Ambrosino C, Mallardo M, Giordano V, Baldassarre F, Dragonetti E, Quinto I, Venuta S. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 179:961–971;1994.

    Article  PubMed  Google Scholar 

  124. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258;1991.

    PubMed  Google Scholar 

  125. Scheppler JA, Nicholson JK, Swan DC, Ahmed-Ansari A, McDougal JS. Down-modulation of MHC-I in a CD4+ T cell line, CEM-E5, after HIV-1 infection. J Immunol 143:2858–2866;1989.

    PubMed  Google Scholar 

  126. Seigel LJ, Ratner L, Josephs SF, Derse D, Feinberg MB, Reyes GA, O'Brien SJ, Wong-Staal F. Transactivation induced by human T-lymphotropic virus type III (HTLV-III) maps to a viral sequence encoding 58 amino acids and lacks tissue specificity. Virology 148:226–231;1986.

    Article  PubMed  Google Scholar 

  127. Sengupta DN, Silverman RH. Activation of interferon-regulated dsRNA-dependent enzymes by human immunodeficiency virus-1 leader RNA. Nucleic Acids Res 17:969–979;1989.

    PubMed  Google Scholar 

  128. Sherr CJ, Rettenmeier CW, Sacca R, Roussel MF, Look AT, Stanley ER. The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1. Cell 41:665–676;1985.

    Article  PubMed  Google Scholar 

  129. Sodroski JG, Patarca R, Rosen CA, Wong-Staal F, Haseltine WA. Location of the trans-activating region on the genome of human T-cell lymphotropic virus type III. Science 229:74–77;1985.

    PubMed  Google Scholar 

  130. Steffy K, Wong-Staal F. Genetic regulation of human immunodeficiency virus. Microbiol Rev 55:193–205;1991.

    PubMed  Google Scholar 

  131. Subramanyam M, Gutheil WG, Bachovchin WW, Huber BT. Mechanism of HIV-1 Tat induced inhibition of antigen-specific T cell responsiveness. J Immunol 150:2544–2553;1993.

    PubMed  Google Scholar 

  132. Taylor JP, Cupp C, Diaz A, Chowdhury M, Khalili K, Jimenez SA, Amini S. Activation of expression of genes coding for extracellular matrix proteins in Tat-producing glioblastoma cells. Proc Natl Acad Sci USA 89:9617–9621;1992.

    PubMed  Google Scholar 

  133. Taylor JP, Pomerantz R, Bagasra O, Chowdhury M, Rappaport J, Khalili K, Amini S. TAR-independent transactivation by Tat in cells derived from the CNS: a novel mechanism of HIV-1 gene regulation. EMBO J 11:3395–3403;1992.

    PubMed  Google Scholar 

  134. Te Velde AA, Huijbens RJF, Heije K, de Vries JE, Figdor CG. IL-4 inhibits secretion of IL-1β, tumor necrosis factor α, and IL-6 by human monocytes. Blood 76:1392–1397;1990.

    PubMed  Google Scholar 

  135. Townsend A, Bodmer H. Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol 7:601–624;1989.

    PubMed  Google Scholar 

  136. Ursini MV, Lettieri T, Braddock M, Martini G. Enhanced activity of human G6PD promoter transfected in HeLa cells producing high levels of HIV-1 Tat. Virology 196:338–343;1993.

    Article  PubMed  Google Scholar 

  137. Vercelli D, Jabara HH, Lauener RP, Geha RS. IL-4 inhibits the synthesis of IFN-γ and induces the synthesis of IgE in human mixed cultures. J Immunol 144:570–573;1990.

    PubMed  Google Scholar 

  138. Viscidi RP, Mayur K, Lederman HM, Frankel AD. Inhibition of antigen-induced lymphocyte proliferation by Tat protein from HIV-1. Science 246:1606–1608;1989.

    PubMed  Google Scholar 

  139. Visvader J, Verma IM. Differential transcription of exon 1 of the human c-fms gene in placental trophoblasts and monocytes. Mol Cell Biol 9:1336–1341;1989.

    PubMed  Google Scholar 

  140. Vogel J, Hinrichs SH, Reynolds RK, Luciw PA, Jay G. The HIVtat gene induces dermal lesions resembling Kaposi's sarcoma in transgenic mice. Nature (London) 335:606–611;1988.

    Article  Google Scholar 

  141. Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, Sporn MB. Transforming growth factor type beta induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci USA 84:5788–5792;1987.

    PubMed  Google Scholar 

  142. Wahl LM, Corcoran ML, Pyle SW, Arthur LO, Harel-Bellan A, Farrar WL. Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1. Proc Natl Acad Sci USA 86:621–625;1989.

    PubMed  Google Scholar 

  143. Wahl SM, Allen JB, McCartney-Francis N, Morganti-Kossmann MC, Kossmann T, Ellingsworth L, Mai UEH, Mergenhagen SE, Orenstein JM. Macrophage- and astrocyte-derived transforming growth factor beta as a mediator of central nervous system dysfunction in acquired immune deficiency syndrome. J Exp Med 173:981–991;1991.

    Article  PubMed  Google Scholar 

  144. Weeks BS, Klotman ME, Holloway E, Stetler-Stevenson WG, Kleinman HK, Klotman PE. HIV-1 infection stimulates T cell invasiveness and synthesis of the 92-kDa type IV collagenase. AIDS Res Hum Retroviruses 9:513–518;1993.

    PubMed  Google Scholar 

  145. Westendorp MO, Li-Weber M, Frank RW, Krammer PH. Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells. J Virol 68:4177–4185;1994.

    PubMed  Google Scholar 

  146. Widmer MB, Acres RB, Sassenfield NM, Grabstein KH. Regulation of cytolytic cell populations from human peripheral blood by B cell stimulatory factor 1 (interleukin 4). J Exp Med 166:1447–1452;1987.

    Article  PubMed  Google Scholar 

  147. Wiley CA, Nelson JA. Role of human immunodeficiency virus and cytomegalovirus in AIDS encephalitis. Am J Pathol 133:73–81;1988.

    PubMed  Google Scholar 

  148. Wong GH, McHugh T, Weber R, Goeddel DV. Tumor necrosis factor alpha selectively sensitizes human immunodeficiency virus-infected cells to heat and radiation. Proc Natl Acad Sci USA 88:4372–4376;1991.

    PubMed  Google Scholar 

  149. Zauli G, Davis BR, Re MC, Visani G, Furlini G, La Placa M. Tat protein stimulates production of transforming growth factor-β 1 by marrow macrophages: a potential mechanism for human immunodeficiency virus-1-induced hematopoietic suppression. Blood 80:3036–3043;1992.

    PubMed  Google Scholar 

  150. Zauli G, Furlini G, Re MC, Milani D, Capitani S, La Placa M. Human immunodeficiency virus type 1 (HIV-1) Tat-protein stimulates the production of interleukin-6 (IL-6) by peripheral blood monocytes. Microbiologica 16:115–120;1993.

    PubMed  Google Scholar 

  151. Zauli G, Gibellini D, Milani D, Mazzoni M, Borgatti P, La Placa M, Capitani S. Human immunodeficiency virus type 1 Tat protein protects lymphoid, epithelial, and neuronal cell lines from death by apoptosis. Cancer Res 53:4481–4485;1993.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, HK., Gallo, R.C. & Ensoli, B. Regulation of cellular gene expression and function by the human immunodeficiency virus type 1 tat protein. J Biomed Sci 2, 189–202 (1995). https://doi.org/10.1007/BF02253380

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253380

Key words

Navigation