Skip to main content
Log in

Das C-reaktive Protein

Ein unabhängiger Risikofaktor für die Entwicklung eines Infekts nach Primärendoprothetik

C-reactive protein

An independent risk factor for the development of infection after primary arthroplasty

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Infektion ist eine folgenschwere Komplikation nach primärer Endoprothetik von Hüft- und Kniegelenk. Das C-reaktive Protein (CRP) hat sich als Infektparameter aufgrund seiner hohen Sensitivität etabliert. Bei mäßiger Spezifität ist bislang unklar, ob eine erhöhte CRP-Konzentration ohne begleitende Klinik ein Risikofaktor für die Entwicklung eines Protheseninfekts nach primärer Endoprothetik ist.

Material und Methode

Im Rahmen einer retrospektiven Untersuchung wurden Patienten mit Protheseninfektion nach primärer Hüft- oder Knieendoprothese hinsichtlich Alter, Geschlecht und Nebenerkrankungen mit einem Patientenkollektiv ohne Protheseninfektion gematcht. Das Durchschnittsalter der 50 in die Studie eingeschlossenen Patienten betrug 67,4 (48–81) Jahre. In den Gruppen waren jeweils 8 Männer und 17 Frauen. Neben dem präoperativen CRP wurden die patienten- und operationsbezogenen Daten und die mikrobiologischen und histopathologischen Befunde erhoben.

Ergebnisse

Das durchschnittliche präoperative CRP betrug in der Infektionsgruppe 1,3±2,5 mg/dl gegenüber 0,4±0,7 mg/dl in der Kontrollgruppe. Ein Grenzwert von 0,5 mg/dl diskriminierte am besten zwischen den Untersuchungsgruppen [13/25 (52%) Infektionsgruppe, 3/25 (12%) Kontrollgruppe, p=0,003]. Unabhängig vom Auftreten einer Infektion zeigten Patienten mit Diabetes mellitus in beiden Gruppen signifikant höhere CRP-Werte (1,2±1,5 mg/dl vs. 0,7±2,0mg/dl, p=0,03).

Schlussfolgerung

Ein erhöhtes präoperatives CRP ist auch bei einem unauffälligen klinischen Befund ein Risikofaktor für die Entwicklung eines Protheseninfekts nach primärer Hüft- oder Knieendoprothese mit einem Grenzwert von 0,5 mg/dl. Verantwortlich scheinen latente lokale oder systemische Infektionen oder aseptische Inflammationen mit konsekutiver lokaler Immunsuppression zu sein. Wir empfehlen die Bestimmung des CRP vor jeder Hüft- oder Knieendoprothesenoperation. Werte >0,5 mg/dl sollten durch systemische und lokale Fokussuche abgeklärt werden. Andernfalls ist der Patient über ein erhöhtes Infektionsrisiko aufzuklären.

Abstract

Background

Infection is a severe complication after primary arthroplasty of the hip (THA) or knee joint (TKA). Based on its high sensitivity, the C-reactive protein (CRP) concentration has become a valuable tool in the diagnosis of infection, although it has only moderate specificity. Because of this, it remains unclear whether a preoperative increased CRP without clinical symptoms is a risk factor for infection after primary arthroplasty.

Material and methods

In a retrospective analysis, we investigated individuals with infection after primary THA or TKA and matched them with patients without infection after similar operations. Matching criteria were age, gender, and present diseases. The average age of the 50 included individuals was 67.4 (range 48–81) years, with eight men and 17 women in each group. In addition to preoperative CRP, specific patient and surgery data and microbiological and histopathologic findings were obtained.

Results

The average preoperative CRP concentration in the infected patient group was 1.3±2.5 mg/dl, in contrast to 0.4±0.7 mg/dl in the noninfected group. A threshold of 0.5 mg/dl was appropriate for discriminating between the two groups [13/25 (52%) in the infection group vs. 3/25 (12%) in the control group, p=0.003]. Independent from the patient group, CRP concentrations were significantly increased in individuals with diabetes mellitus (1.2±1.5 vs. 0.7±2.0 mg/dl, p=0.03).

Conclusion

An increased preoperative CRP concentration without clinical findings of infection is a risk factor for prosthetic infection after primary THA or TKA with a threshold concentration of 0.5 mg/dl. Latent local or systemic infections or aseptic inflammation with subsequent local immune suppression seem to be responsible. We recommend evaluating CRP before every THA and TKA. For values beyond 0.5 mg/dl, an exploration for infection should be done. Otherwise, the patient should be informed about the increased risk of infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Ahmad J, Ahmned F, Siddiqui Ma et al. (2007) Inflammatory markers, insulin resistance and carotid intima-media thickness in North-Indian type 2 diabetic subjects. J Assoc Physicians India 55: 693–699

    PubMed  CAS  Google Scholar 

  2. Akalin A, Alatas O, Colak O (2008) Relation of plasma homocysteine levels to atherosclerotic vascular disease and inflammation markers in type 2 diabetic patients. Eur J Endocrinol 158: 47–52

    Article  PubMed  CAS  Google Scholar 

  3. Babkin Y, Raveh D, Lifschitz M et al. (2007) Incidence and risk factors for surgical infection after total knee replacement. Scand J Infect Dis 10: 890–895

    Article  Google Scholar 

  4. Bhattacharyya T, Hooper Dc (2007) Antibiotic dosing before primary hip and knee replacement as a pay-for-performance measure. J Bone Joint Surg Am 89: 287–291

    Article  PubMed  Google Scholar 

  5. Botha-Scheepers SA, Watt I, Slagboom E et al. (2008) Innate production of tumor necrosis factor-(alpha) and Interleukin-10 is associated with radiological progression of knee osteoarthritis. Ann Rheum Dis 67: 1165–1169

    Article  PubMed  CAS  Google Scholar 

  6. Buchbinder S, Kratzsch J, Fiedler GM et al. (2008) Body weight and oral contraceptives are the most important modulators of serum CRP levels. Scand J Clin Lab Invest 2: 140–144

    Article  Google Scholar 

  7. Buess T, Ludwig C (1995) Diagnostic value of C-reactive protein in comparison with erythrocyte sedimentation as routine admission diagnostic test. Schweiz Med Wochenschr 125: 120–124

    PubMed  CAS  Google Scholar 

  8. Conrozier T, Carlier Mc, Mathieu P et al. (2000) Serum levels of YKL-40 and C reactive protein in patients with hip osteoarthritis and healthy subjects: a cross sectional study. Ann Rheum Dis 59: 828–831

    Article  PubMed  CAS  Google Scholar 

  9. Dati F, Schumann G, Thomas L et al. (1996) Consensus of a group of professional societies and diagnostic companies on guidelines for interim reference ranges for 14 proteins in serum based on the standardization against the IFCC/BCR/CAP Reference Material (CRM 470). International Federation of Clinical Chemistry. Community Bureau of Reference of the Commission of the European Communities. College of American Pathologists. Eur J Clin Chem Clin Biochem 34: 517–520

    PubMed  CAS  Google Scholar 

  10. Deepa R, Velmurugan K, Arvind K et al. (2006) Serum levels of interleukin 6, C-reactive protein, vascular cell adhesion molecule 1, and monocyte chemotactic protein 1 in relation to insulin resistance and glucose intolerance – the Chennai Urban Rural Epidemiology Study (CURES). Metabolism 55: 1232–1238

    Article  PubMed  CAS  Google Scholar 

  11. Esposito S (1999) Is single-dose antibiotic prophylaxis sufficient for any surgical procedure? J Chemother 11: 556–564

    PubMed  CAS  Google Scholar 

  12. Gallo J, Kolar M, Novotny R et al. (2003) Pathogenesis of prosthesis-related infection. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 147: 27–35

    PubMed  Google Scholar 

  13. Greidanus NV, Masri BA, Garbuz DS et al. (2007) Use of erythrocyte sedimentation rate and C-reactive protein level to diagnose infection before revision total knee arthroplasty. A prospective evaluation. J Bone Joint Surg Am 89: 1409–1416

    Article  PubMed  Google Scholar 

  14. Grutz G (2005) New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol 77: 3–15

    PubMed  Google Scholar 

  15. Guttormsen BN, Stein JH, Mcbride PE et al. (2007) Rationale for targeted rather than population based screening with C-reactive protein using the National Health and Nutrition Examination Survey (1999 to 2002). Am J Cardiol 100: 1130–1133

    Article  PubMed  CAS  Google Scholar 

  16. Hart WJ, Jones RS (2006) Two-stage revision of infected total knee replacements using articulating cement spacers and short-term antibiotic therapy. J Bone Joint Surg Br 88: 1011–1015

    Article  PubMed  CAS  Google Scholar 

  17. Hoad-Reddick DA, Evans CR, Norman P et al. (2005) Is there a role for extended antibiotic therapy in a two-stage revision of the infected knee arthroplasty? J Bone Joint Surg Br 87: 171–174

    Article  PubMed  CAS  Google Scholar 

  18. Hulejova H, Spacek P, Klezl Z et al. (2003) Changes in the articular compartment in advanced osteoarthritis. Acta Chir Orthop Traumatol Cech 70: 248–252

    PubMed  CAS  Google Scholar 

  19. Ince A, Rupp J, Frommelt L et al. (2004) Is „aseptic“ loosening of the prosthetic cup after total hip replacement due to nonculturable bacterial pathogens in patients with low-grade infection? Clin Infect Dis 39: 1599–1603

    Article  PubMed  CAS  Google Scholar 

  20. Jahoda D, Nyc O, Pokorny D et al. (2006) Antibiotic treatment for prevention of infectious complications in joint replacement. Acta Chir Orthop Traumatol Cech 73: 108–114

    PubMed  CAS  Google Scholar 

  21. Kaspar S, De Vdbj (2005) Infection in hip arthroplasty after previous injection of steroid. J Bone Joint Surg Br 87: 454–457

    Article  PubMed  CAS  Google Scholar 

  22. Katzer A, Wening Jv, Kupka P et al. (1997) Perioperative antibiotic prophylaxis in hip operations. Penetration into bone, capsule tissue and cartilage exemplified by cefuroxime. Unfallchirurgie 23: 161–170

    Article  PubMed  CAS  Google Scholar 

  23. Kordelle J, Klett R, Stahl U et al. (2003) Stage diagnostics for postinfection revision of hip and knee replacement: value of laboratory parameters and antigranulocyte scintigraphy. Z Orthop Ihre Grenzgeb 141: 547–553

    Article  PubMed  CAS  Google Scholar 

  24. Laffer R, Ruef C (2006) Diagnosis and treatment of prosthetic joint infections. Z Rheumatol 65(12): 14–17

    Article  Google Scholar 

  25. Lentino Jr (2003) Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 36: 1157–1161

    Article  PubMed  Google Scholar 

  26. Lohmann CH, Furst M, Niggemeyer O et al. (2007) The treatment of periprosthetic infections. Z Rheumatol 66: 28–33

    Article  PubMed  CAS  Google Scholar 

  27. Mak PH, Campbell RC, Irwin MG (2002) The ASA Physical Status Classification: inter-observer consistency. American Society of Anesthesiologists. Anaesth Intens Care 30: 633–640

    CAS  Google Scholar 

  28. Mangram AJ, Horan TC, Pearson Ml et al. (1999) Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am J Infect Control 27: 97–196

    Article  PubMed  CAS  Google Scholar 

  29. Meding JB, Klay M, Healy A et al. (2007) The prescreening history and physical in elective total joint arthroplasty. J Arthroplasty 22: 21–23

    Article  PubMed  Google Scholar 

  30. Minnema B, Vearncombe M, Augustin A et al. (2004) Risk factors for surgical-site infection following primary total knee arthroplasty. Infect Control Hosp Epidemiol 25: 477–480

    Article  PubMed  Google Scholar 

  31. Morawietz L, Classen RA, Schroder JH et al. (2006) Proposal for a histopathological consensus classification of the periprosthetic interface membrane. J Clin Pathol 59: 591–597

    Article  PubMed  CAS  Google Scholar 

  32. Neut D, Van Horn JR, Van Kooten TG et al. (2003) Detection of biomaterial-associated infections in orthopaedic joint implants. Clin Orthop Relat Res 413: 261–268

    Article  PubMed  Google Scholar 

  33. Nilsdotter-Augustinsson A, Briheim G, Herder A et al. (2007) Inflammatory response in 85 patients with loosened hip prostheses: a prospective study comparing inflammatory markers in patients with aseptic and septic prosthetic loosening. Acta Orthop 78: 629–639

    Article  PubMed  Google Scholar 

  34. Otani T, Iwasaki M, Sasazuki S et al. (2006) Plasma C-reactive protein and risk of colorectal cancer in a nested case-control study: Japan Public Health Center-based prospective study. Cancer Epidemiol Biomarkers Prev 15: 690–695

    Article  PubMed  CAS  Google Scholar 

  35. Papavasiliou AV, Isaac Dl, Marimuthu R et al. (2006) Infection in knee replacements after previous injection of intra-articular steroid. J Bone Joint Surg Br 88: 321–323

    Article  PubMed  CAS  Google Scholar 

  36. Pearle AD, Scanzello CR, George S et al. (2007) Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthritis Cartilage 15: 516–523

    Article  PubMed  CAS  Google Scholar 

  37. Peersman G, Laskin R, Davis J et al. (2001) Infection in total knee replacement: a retrospective review of 6489 total knee replacements. Clin Orthop Relat Res 392: 15–23

    Article  PubMed  Google Scholar 

  38. Poss R, Thornhill TS, Ewald FC et al. (1984) Factors influencing the incidence and outcome of infection following total joint arthroplasty. Clin Orthop Relat Res 182: 117–126

    PubMed  Google Scholar 

  39. Ridgeway S, Wilson J, Charlet A et al. (2005) Infection of the surgical site after arthroplasty of the hip. J Bone Joint Surg Br 87: 844–850

    Article  PubMed  CAS  Google Scholar 

  40. Ritter MA, Olberding EM, Malinzak RA (2007) Ultraviolet lighting during orthopaedic surgery and the rate of infection. J Bone Joint Surg Am 89: 1935–1940

    Article  PubMed  Google Scholar 

  41. Rossi M, Zimmerli W, Furrer H et al. (2005) Antibiotic prophylaxis for late blood-borne infections of joint prostheses. Schweiz Monatsschr Zahnmed 115: 571–579

    PubMed  CAS  Google Scholar 

  42. Spangehl MJ, Masri BA, O’connell JX et al. (1999) Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties. J Bone Joint Surg Am 81: 672–683

    PubMed  CAS  Google Scholar 

  43. Sturmer T, Brenner H, Koenig W et al. (2004) Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Ann Rheum Dis 63: 200–205

    Article  PubMed  CAS  Google Scholar 

  44. Trampuz A, Piper KE, Jacobson MJ et al. (2007) Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 357: 654–663

    Article  PubMed  CAS  Google Scholar 

  45. Wilson MG, Kelley K, Thornhill TS (1990) Infection as a complication of total knee-replacement arthroplasty. Risk factors and treatment in sixty-seven cases. J Bone Joint Surg Am 72: 878–883

    PubMed  CAS  Google Scholar 

  46. Wolfe F (1997) The C-reactive protein but not erythrocyte sedimentation rate is associated with clinical severity in patients with osteoarthritis of the knee or hip. J Rheumatol 24: 1486–1488

    PubMed  CAS  Google Scholar 

  47. Yoshikane H, Yamamoto T, Ozaki M et al. (2007) Clinical significance of high-sensitivity C-reactive protein in lifestyle-related disease and metabolic syndrome. J Cardiol 50: 175–182

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Matziolis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfitzner, T., Krocker, D., Perka, C. et al. Das C-reaktive Protein. Orthopäde 37, 1116–1120 (2008). https://doi.org/10.1007/s00132-008-1342-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-008-1342-1

Schlüsselwörter

Keywords

Navigation