Skip to main content

Advertisement

Log in

Constitutive and oxidative-stress-induced expression of VEGF in the RPE are differently regulated by different Mitogen-activated protein kinases

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Vascular endothelial growth factor (VEGF) is a fundamental factor for angiogenesis. It plays important roles in pathological conditions (e.g. the development of wet AMD), but also in the healthy organism) e.g. in maintaining the vasculature and supporting the retina). Recent therapies to treat the wet AMD focus on neutralizing VEGF indiscriminately. VEGF is constitutively expressed in the retina, but its expression is upregulated by various (noxious) stimuli, e.g. oxidative stress or hypoxia. Discrimination between constitutive expression of VEGF and its pathological upregulation might provide the possibility of focusing on inhibiting the pathological expression only. Here, we focused on the influence of different mitogen-activated protein kinase (MAPK) (p38, Erk, JNK) on the secretion and expression of VEGF, with or without being challenged by oxidative stress.

Methods

VEGF secretion was measured using a perfusion organ culture model; expression was examined in primary RPE culture and Western blotting.

Results

Constitutive VEGF expression and secretion can be diminished by inhibiting p38, while inhibiting Erk or JNK does not show a significant effect. When challenged with oxidative stress (250 µM t-butylhydroperoxide), VEGF expression and secretion increases and the influence of the MAPK changes: While p38 still accounts for about 30% of the secretion, Erk shows a similar influence. Inhibiting JNK presents conflicting results. In organ culture, inhibiting JNK significantly increases VEGF secretion after stimulation with 250 µM tBH, while with regard to VEGF expression in RPE cell culture, this effect could not be seen.

Conclusion

Constitutive and oxidative stress induced VEGF secretion, and expression is differently regulated, which might offer an opportunity to selectively inhibit pathological VEGF expression only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin RC, Rosenfeld PJ (2007) Antiangiogenic therapy in neovascular age-related macular degeneration. Int Ophthalmol Clin 47:117–137, doi:10.1097/IIO.0b013e31802bd873

    Article  PubMed  Google Scholar 

  2. Steinbrook R (2006) The price of sight. N Engl J Med 355:1409–1412, doi:10.1056/NEJMp068185

    Article  PubMed  CAS  Google Scholar 

  3. El-Remessy AB, Bartoli M, Platt DH, Fulton D, Caldwell RB (2004) Oxidative stress inactivates VEGF survival signaling in rential endothelial cells via PI 3-kinase tyrosine nitration. J Cell Sci 118:243–252, doi:10.1242/jcs.01612

    Article  Google Scholar 

  4. Zachary I (2004) Neuroprotective role of VEGF: signalling mechanisms, biological function, and therapeutic potential. Neurosignals 14:207–221, doi:10.1159/000088637

    Article  Google Scholar 

  5. Avery RL, Pieramici DJ, Rabena MD, Castellarin AA, Nasir MA, Giust MJ (2006) Intravitreal Bevacizumab (Avastin) for neovascular AMD. Ophthalmol 113:363–372

    Article  Google Scholar 

  6. Spitzer MS, Yoeruek E, Sierra A, Wallenfels B, Schraermeyer U, Spitzer B, Bartz-Schmidt KU, Szurman P (2007) Comparative antiproliferative and cytotoxic profile of bevacizumab (Avastin), pegaptanib (Macugen) and ranibizumab (Lucentis) on different ocular cells. Graefes Arch Clin Exp Ophthalmol 245:1835–1842

    Article  Google Scholar 

  7. Peters S, Heiduschka P, Julien S, Ziemssen F, Fietz H, Bartz-Schmidt KU, Schraermeyer U (2007) Ultrastructural findings in the primate eye after intravitreal injections of bevacizumab. Am J Ophthalmol 143:995–1002, doi:10.1016/j.ajo.2007.03.007

    Article  PubMed  CAS  Google Scholar 

  8. Josko J, Mazurek M (2004) Transcription factors having impact on VEGF gene expression in angiongenesis. Med Sci Monit 10:RA89–RA98

    PubMed  CAS  Google Scholar 

  9. Pages G, Berra E, Milanini J, Levy AP, Pouyssegur J (2000) Stress activated Protein Kinases (JNK and p38/HOG) are essential for Vascular Endothelial Growth Factor (VEGF) mRNA stability. J Biol Chem 275:26484–26491, doi:10.1074/jbc.M002104200

    Article  PubMed  CAS  Google Scholar 

  10. Poulaki V, Joussen AM, Mitsiades N, Mitsiades CS, Iliaki EF, Adamis AP (2004) Insulin-like Growth Factor -1 (IGF-1) plays a pathogenetic role in diabetic retinopathy. Am J Pathol 165:457–469

    PubMed  CAS  Google Scholar 

  11. Poulaki V, Qin W, Joussen AM, Hurlbut P, Wiegand SJ, Rudge J, Yancopoulos GD, Adamis A (2002) Acute insulin therapy exacerbates diabetic blood–retinal barrier breakdown via hypoxia - inducible factor 1 alpha and VEGF. J Clin Invest 109:805–815

    PubMed  CAS  Google Scholar 

  12. Nagineni CN, Nagineni S, Samuel W, Pardhasaradhi K, Wiggert B, Detrick B, Hooks JJ (2003) TGF-ß induces expression of VEGF in human RPE cells: involvement of MAPK. J Cell Physiol 197:453–462, doi:10.1002/jcp.10378

    Article  PubMed  CAS  Google Scholar 

  13. Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E (2001) Regulation of VEGF expression by advanced glycation End products. J Biol Chem 276:43836–43841, doi:10.1074/jbc.M106534200

    Article  PubMed  CAS  Google Scholar 

  14. Klettner A, Roider J (2008) Comparison of Bevacizumab, Ranibizumab and Pegaptanib in vitro: efficiency and possible additional pathways. Invest Ophthalmol Vis Sci 49:4523–4527, doi:10.1167/iovs.08-2055

    Article  PubMed  Google Scholar 

  15. Klettner A, Herdegen T (2003) The immunophilin-ligands FK506 and V-10, 367 mediate neuroprotection by the heat shock response. Br J Pharmacol 138:1004–1012, doi:10.1038/sj.bjp. 0705132

    Article  PubMed  CAS  Google Scholar 

  16. McColl B, Stacker S, Achen M (2004) Molecular regulation of the VEGF family - inducers of angiogenesis and lymphangiogenesis. APMIS 112:463–480, doi:10.1111/j.1600-0463.2004.apm11207-0807.x

    Article  PubMed  CAS  Google Scholar 

  17. Fletcher EC, Chong NV (2008) Looking beyong Lucentis on the management of AMD. Eye 22:742–750, doi:10.1038/sj.eye.6703008

    Article  PubMed  CAS  Google Scholar 

  18. Caldwell RB, Bartoli M, Behzadian A, El-Remessy AB, Al-Shabrawey M, Platt DH, Liou G, Caldwell RW (2005) VEGF and diabetic retinopathy: role of oxidative stress. Curr Drug Targets 6:511–524, doi:10.2174/1389450054021981

    Article  PubMed  CAS  Google Scholar 

  19. Bian ZM, Elner SG, Elner VM (2007) Thrombin-induced VEGF expression in human RPE. Invest Ophthalmol Vis Sci 48:2738–2746, doi:10.1167/iovs.06-1023

    Article  PubMed  Google Scholar 

  20. Bian ZM, Elner SG, Elner VM (2007) Regulation of VEGF mRNA expression and protein secretion by TGF-beta2 in human retinal pigment epithelial cells. Exp Eye Res 84:812–822, doi:10.1016/j.exer.2006.12.016

    Article  PubMed  CAS  Google Scholar 

  21. Murata M, Yudoh K, Nakamura H, Kato T, Inoue K, Chiba J, Nishioka K, Masuko-Hongo K (2006) Distinct signaling pathways are involved in hypoxia- and IL-1-induced VEGF expression in human articular chondrocytes. J Orthop Res 24:1544–1554, doi:10.1002/jor.20168

    Article  PubMed  CAS  Google Scholar 

  22. Fan B, Wang YX, Yao T, Zhu YC (2005) p38 Mitogen-activated protein kinase mediates hypoxia-induced vascular endothelial growth factor release in human endothelial cells. Sheng Li Xue Bao 57:13–20

    PubMed  CAS  Google Scholar 

  23. Kook SH, Son YO, Jang YS, Lee KY, Lee SA, Kim BS, Lee HJ, Lee JC (2008) Inhibition of JNK sensitized tumor cells to flavonoid-induced apoptosis through down-regulation of JunD. Toxicol Appl Pharmacol 227:468–476, doi:10.1016/j.taap. 2007.11.004

    Article  PubMed  CAS  Google Scholar 

  24. Hilfiker-Kleiner D, Hilfiker A, Kaminstki K, Schaefer A, Park JK, Michel K, Quint A, Yaniv M, Weitzman JB, Drexler H (2005) Lack of JunD promotes pressure overload - induced apoptosis, hypertrophic growth and angiogenesis in the heart. Circulation 112:1470–1477, doi:10.1161/CIRCULATIONAHA.104.518472

    Article  PubMed  Google Scholar 

  25. Gerald D, Berra E, Frapart YM, Chan DA, Giacca AJ, Mansury D, Pouyssegur J, Yaniv M, Mechta-Grigoriou F (2004) JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781–794, doi:10.1016/j.cell.2004.08.025

    Article  PubMed  CAS  Google Scholar 

  26. Milanini J, Vinals F, Pouyssegur J, Pages G (1998) p42/p44 MAP Kinase module plays a key role in the transcriptional regualtion of the cascular endothelial growth factor (VEGF) gene in fibroblasts. J Biol Chem 273:18165–18172, doi:10.1074/jbc.273.29.18165

    Article  PubMed  CAS  Google Scholar 

  27. Berra E, Pages G, Pouyssegur J (2000) MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Res 19:139–145, doi:10.1023/A:1026506011458

    Article  CAS  Google Scholar 

  28. Sodhi A, Montaner S, Miyazaki H, Gutkind JS (2001) MAPK and Akt act cooperatively but independently on hypoxia inducible factor-1α in rasV12 upregulation of VEGF. Biochem Biophys Res Commun 287:292–300, doi:10.1006/bbrc.2001.5532

    Article  PubMed  CAS  Google Scholar 

  29. Sutton KM, Hayat S, Chau NM, Cook S, Pouyssegur J, Ahmed A, Perusinghe N, Le Floch R, Yang J, Ashcroft M (2007) Selective inhibition of MEK1/2 reveals a differential requirement for ERK1/2 signalling in the regulation of HIF-1 in response to hypoxia and IGF-1. Oncogene 26:3920–3929, doi:10.1038/sj.onc.1210168

    Article  PubMed  CAS  Google Scholar 

  30. Forsythe J, Jiang B, Iyer N, Agani F, Leung S, Koos R, Semenza G (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613

    PubMed  CAS  Google Scholar 

  31. Bonello S, Zähringer C, BelAiba R, Djordjevic T, Hess J, Michiels C, Kietzmann T, Görlach A (2007) Reactive oxygen species activate the HIF-1α promoter via a functional NFkB site. Arterioscler Thromb Vasc Biol 27:755–761, doi:10.1161/01.ATV.0000258979.92828.bc

    Article  PubMed  CAS  Google Scholar 

  32. McMahon S, Charbonneau M, Grandmont S, Richard D, Dubois C (2006) Transforming growth factor beta 1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J Biol Chem 281:24171–24181, doi:10.1074/jbc.M604507200

    Article  PubMed  CAS  Google Scholar 

  33. Görlach A, Diebold I, Schini-Kerth V, Berchner-Pfannschmidt U, Roth U, Brandes R, Kietzmann T, Busse R (2001) Circ Res 89:47–54, doi:10.1161/hh1301.092678

    Article  PubMed  Google Scholar 

  34. Friday BB, Adjei AA (2008) Advances in targeting the Ras/Raf/MEK/Erk mitogen activated protein kinase cascade with MEK inhibitors for cancer therapy. Mol Pathol 14:342–346

    CAS  Google Scholar 

  35. Michels S, Rosenfeld PJ, Puliafito CA, Marcus EN, Venkatraman AS (2005) Systemic Bevacizumab (Avastin) Therapy for Neovascular Age Related Macular Degeneration. Ophthalmol 112:1035–1047

    Article  Google Scholar 

  36. Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3535–3544

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank K. Lange for her excellent technical assistance. This work was financially supported by the CAU Medical Faculty Intramural Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexa Klettner.

Additional information

No financial relationships. This work was financially supported by the CAU Medical Faculty Intramural Research Grant.

The authors have full control of all primary data, and agree to allow Graefe’s Archive for Clinical and Experimental Ophthalmology to review their data upon request.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klettner, A., Roider, J. Constitutive and oxidative-stress-induced expression of VEGF in the RPE are differently regulated by different Mitogen-activated protein kinases. Graefes Arch Clin Exp Ophthalmol 247, 1487–1492 (2009). https://doi.org/10.1007/s00417-009-1139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-009-1139-x

Keywords

Navigation