Skip to main content

Advertisement

Log in

Volume replacement and microhemodynamic changes in polytrauma

  • Current Concepts in Clinical Surgery
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Though fluid administration is one of the most basic concepts in resuscitation, there is ongoing controversy and continuing research on the definition of the ideal fluid for resuscitation of trauma and hemorrhage and for intraoperative volume support. In general, crystalloids and colloids, as well as blood, blood substitutes and oxygen therapeutics, are available. This report briefly revisits the physiological mechanisms underlying resuscitation with crystalloids and colloids, emphasizing colloid-supplemented resuscitation with hypertonic saline. Finally, potential applications of oxygen therapeutics are briefly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. American College of Surgeons, Committee on Trauma (1997) In: Advanced trauma life support manual. American College of Surgeons, Chicago, pp 21–60

  2. Rizoli SB (2003) Crystalloids and colloids in trauma resuscitation: a brief overview of the current debate. J Trauma 54:S82–S88

    PubMed  Google Scholar 

  3. Orlinsky M, Shoemaker W, Reis ED, Kerstein MD (2001) Current controversies in shock and resuscitation. Surg Clin North Am 81:1217–1262

    PubMed  Google Scholar 

  4. Boldt J, Lenz M, Kumle B, Papsdorf M (1998) Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med 24:147–151

    CAS  PubMed  Google Scholar 

  5. Lamke LO, Liljedahl SO (1976) Plasma volume changes after infusion of various plasma expanders. Resuscitation 5:93–102

    CAS  PubMed  Google Scholar 

  6. Guyton AC (1991) The body fluid compartments: extracellular and intracellular fluids: interstitial fluid and edema. In: Guyton AC (ed) Textbook of medical physiology, 8th edn. Saunders, Philadelphia, pp 274–285

  7. De Felippe J Jr, Timoner J, Velasco IT, Lopes OU (1980) Treatment of refractory hypovolaemic shock by 7.5% sodium chloride injections. Lancet 2:1002–1004

    PubMed  Google Scholar 

  8. Velasco IT, Pontieri V, Rocha e Silva M Jr, Lopes OU (1980) Hyperosmotic NaCl and severe hemorrhagic shock. Am J Physiol 239:H664–H673

    CAS  PubMed  Google Scholar 

  9. Lopes OU, Pontieri V, Rocha e Silva M Jr, Velasco IT (1981) Hyperosmotic NaCl and severe hemorrhagic shock: role of the innervated lung. Am J Physiol 241:H883–H890

    CAS  PubMed  Google Scholar 

  10. Nakayama S, Sibley L, Gunther RA, Holcroft JW, Kramer GC (1984) Small-volume resuscitation with hypertonic saline (2,400 mOs m/liter) during hemorrhagic shock. Circ Shock 13:149–159

    Google Scholar 

  11. Smith GJ, Kramer GC, Perron P, Nakayama S, Gunther RA, Holcroft JW (1985) A comparison of several hypertonic solutions for resuscitation of bled sheep. J Surg Res 39:517–528

    CAS  PubMed  Google Scholar 

  12. Traverso LW, Bellamy RF, Hollenbach SJ, Witcher LD (1987) Hypertonic sodium chloride solutions: effect on hemodynamics and survival after hemorrhage in swine. J Trauma 27:32–39

    CAS  PubMed  Google Scholar 

  13. Nakayama S, Kramer GC, Carlsen RC, Holcroft JW (1985) Infusion of very hypertonic saline to bled rats: membrane potentials and fluid shifts. J Surg Res 38:180–186

    CAS  PubMed  Google Scholar 

  14. Rocha e Silva M, Velasco IT, Nogueira da Silva RI, Oliveira MA, Negraes GA, Oliveira MA (1987) Hyperosmotic sodium salts reverse severe hemorrhagic shock: other solutes do not. Am J Physiol 253:H751–H762

    PubMed  Google Scholar 

  15. Rocha e Silva M, Braga GA, Prist R, Velasco IT, Granca ES (1993) Isochloremic hypertonic solutions for severe hemorrhage. J Trauma 35:200–205

    PubMed  Google Scholar 

  16. Rocha e Silva M, Braga GA, Prist R, Velasco IT, Franca ES (1992) Physical and physiological characteristics of pressure-driven hemorrhage. Am J Physiol 263:H1402–H1410

    PubMed  Google Scholar 

  17. Mazzoni MC, Borgstrom P, Arfors KE, Intaglietta M (1988) Dynamic fluid redistribution in hyperosmotic resuscitation of hypovolemic hemorrhage. Am J Physiol 255:H629–H637

    CAS  PubMed  Google Scholar 

  18. Mazzoni MC, Borgstrom P, Intaglietta M, Arfors KE (1989) Lumenal narrowing and endothelial cell swelling in skeletal muscle capillaries during hemorrhagic shock. Circ Shock 29:27–39

    Google Scholar 

  19. Mazzoni MC, Borgstrom P, Intaglietta M, Arfors KE (1990) Capillary narrowing in hemorrhagic shock is rectified by hyperosmotic saline–dextran reinfusion. Circ Shock 31:407–418

    Google Scholar 

  20. Mazzoni MC, Warnke KC, Arfors KE, Skalak TC (1994) Capillary hemodynamics in hemorrhagic shock and reperfusion: in vivo and model analysis. Am J Physiol 267:H1928–H1935

    CAS  PubMed  Google Scholar 

  21. Marti-Cabrera M, Ortiz JL, Dura JM, Cortijo J, Barrachina MD, Morcillo E (1991) Differential effects of cyclooxygenase inhibitors on the cardiovascular response to hyperosmotic mannitol. Methods Find Exp Clin Pharmacol 13:175–179

    CAS  PubMed  Google Scholar 

  22. Rabinovici R, Yue TL, Krausz MM, Sellers TS, Lynch KM, Feuerstein G (1992) Hemodynamic, hematologic and eicosanoid mediated mechanisms in 7.5 percent sodium chloride treatment of uncontrolled hemorrhagic shock. Surg Gynecol Obstet 175:341–354

    CAS  PubMed  Google Scholar 

  23. Kien ND, Kramer GC, White DA (1991) Acute hypotension caused by rapid hypertonic saline infusion in anesthetized dogs. Anesth Analg 73:597–602

    CAS  PubMed  Google Scholar 

  24. Ben-Haim SA, Hayam G, Edoute Y, Better OS (1992) Effect of hypertonicity on contractility of isolated working rat left ventricle. Cardiovasc Res 26:379–382

    CAS  PubMed  Google Scholar 

  25. Constable PD, Muir WW III, Binkley PF (1994) Hypertonic saline is a negative inotropic agent in normovolumic dogs. Am J Physiol 267:H667–H677

    CAS  PubMed  Google Scholar 

  26. Crystal GJ, Gurevicius J, Kim SJ, Eckel PK, Ismail EF, Salem MR (1994) Effects of hypertonic saline solutions in the coronary circulation. Circ Shock 42:27–38

    CAS  PubMed  Google Scholar 

  27. Kreimeier U, Messmer K (1991) Use of hypertonic saline solutions in intensive care and emergency medicine—developments and perspectives. Klin Wochenschr 69:134–142

    Google Scholar 

  28. Lopes OU, Pontieri V, Rocha e Silva M Jr, Velasco IT (1981) Hyperosmotic NaCl and severe hemorrhagic shock: role of the innervated lung. Am J Physiol 241:H883–H890

    CAS  PubMed  Google Scholar 

  29. Schertel ER, Valentine AK, Rademakers AM, Muir WW (1990) Influence of 7% NaCl on the mechanical properties of the systemic circulation in the hypovolemic dog. Circ Shock 31:203–214

    PubMed  Google Scholar 

  30. Hands R, Holcroft JW, Perron PR, Kramer GC (1988) Comparison of peripheral and central infusions of 7.5% NaCl/6% dextran 70. Surgery 103:684–689

    PubMed  Google Scholar 

  31. Allen DA, Schertel ER, Schmall LM, Muir WW (1992) Lung innervation and the hemodynamic response to 7% sodium chloride in hypovolemic dogs. Circ Shock 38:189–194

    PubMed  Google Scholar 

  32. Vollmar B, Lang G, Post S, Menger MD, Messmer K (1993) Microcirculation of the liver in hemorrhagic shock in the rat and its significance for energy metabolism and function. Zentralbl Chir 118:218–225

    CAS  PubMed  Google Scholar 

  33. Vollmar B, Lang G, Menger MD, Messmer K (1994) Hypertonic hydroxyethyl starch restores hepatic microvascular perfusion in hemorrhagic shock. Am J Physiol 266:H1927–H1934

    CAS  PubMed  Google Scholar 

  34. Sun LL, Ruff P, Austin B, Deb S, Martin B, Burris D, Rhee P (1999) Early up-regulation of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression in rats with hemorrhagic shock and resuscitation. Shock 11:416–422

    CAS  PubMed  Google Scholar 

  35. Angle N, Cabello-Passini R, Hoyt DB, Loomis WH, Shreve A, Namiki S, Junger WG (2000) Hypertonic saline infusion: can it regulate human neutrophil function? Shock 14:503–508

    CAS  PubMed  Google Scholar 

  36. Thiel M, Buessecker F, Eberhardt K, Chouker A, Setzer F, Kreimeier U, Arfors KE, Peter K, Messmer K (2001) Effects of hypertonic saline on expression of human polymorphonuclear leukocyte adhesion molecules. J Leukoc Biol 70:261–273

    CAS  PubMed  Google Scholar 

  37. Ciesla DJ, Moore EE, Gonzalez RJ, Biffl WL, Silliman CC (2000) Hypertonic saline inhibits neutrophil (PMN) priming via attenuation of p38 MAPK signaling. Shock 14:265–269

    CAS  PubMed  Google Scholar 

  38. Ciesla DJ, Moore EE, Musters RJ, Biffl WL, Silliman CA (2001) Hypertonic saline alteration of the PMN cytoskeleton: implications for signal transduction and the cytotoxic response. J Trauma 50:206–212

    CAS  PubMed  Google Scholar 

  39. Oreopoulos GD, Hamilton J, Rizoli SB, Fan J, Lu Z, Li YH, Marshall JC, Kapus A, Rotstein OD (2000) In vivo and in vitro modulation of intercellular adhesion molecule (ICAM)-1 expression by hypertonicity. Shock 14:409–414

    CAS  PubMed  Google Scholar 

  40. Corso CO, Okamoto S, Ruttinger D, Messmer K (1999) Hypertonic saline dextran attenuates leukocyte accumulation in the liver after hemorrhagic shock and resuscitation. J Trauma 46:417–423

    CAS  PubMed  Google Scholar 

  41. Bauer M, Marzi I, Ziegenfuss T, Seeck G, Buhren V, Larsen R (1993) Comparative effects of crystalloid and small volume hypertonic hyperoncotic fluid resuscitation on hepatic microcirculation after hemorrhagic shock. Circ Shock 40:187–193

    Google Scholar 

  42. Nolte D, Bayer M, Lehr HA, Becker M, Krombach F, Kreimeier U, Messmer K (1992) Attenuation of postischemic microvascular disturbances in striated muscle by hyperosmolar saline dextran. Am J Physiol 263:H1411–H1416

    CAS  PubMed  Google Scholar 

  43. Saetzler RK, Buckman RF Jr, Eynon AC, Tuma RF (1999) Hypertonic saline attenuates leukocyte/endothelium and leukocyte/platelet interactions following hemorrhagic shock. Surg Forum 47:41–43

    Google Scholar 

  44. Pascual JL, Ferri LE, Seely AJ, Campisi G, Chaudhury P, Giannias B, Evans DC, Razek T, Michel RP, Christou NV (2002) Hypertonic saline resuscitation of hemorrhagic shock diminishes neutrophil rolling and adherence to endothelium and reduces in vivo vascular leakage. Ann Surg 236:634–642

    Article  PubMed  Google Scholar 

  45. Pascual JL, Ferri LE, Chaudhury P, Seely AJ, Campisi G, Giannias B, Evans DC, Christou NV (2001) Hemorrhagic shock resuscitation with a low molecular weight starch reduces neutrophil–endothelial interactions and vessel leakage in vivo. Surg Infect 2:275–287

    Article  CAS  Google Scholar 

  46. Shields CJ, Winter DC, Sookhai S, Ryan L, Kirwan WO, Redmond HP (2000) Hypertonic saline attenuates end-organ damage in an experimental model of acute pancreatitis. Br J Surg 87:1336–1340

    Article  PubMed  Google Scholar 

  47. de Carvalho H, Matos JA, Bouskela E, Svensjo E (1999) Vascular permeability increase and plasma volume loss induced by endotoxin was attenuated by hypertonic saline with or without dextran. Shock 12:75–80

    PubMed  Google Scholar 

  48. Tawadrous ZS, Delude RL, Fink MP (2002) Resuscitation from hemorrhagic shock with Ringer’s ethyl pyruvate solution improves survival and ameliorates intestinal mucosal hyperpermeability in rats. Shock 17:473–477

    PubMed  Google Scholar 

  49. Venkataraman R, Kellum JA, Song M, Fink MP (2002) Resuscitation with Ringer’s ethyl pyruvate solution prolongs survival and modulates plasma cytokine and nitrite/nitrate concentrations in a rat model of lipopolysaccharide-induced shock. Shock 18:507–512

    PubMed  Google Scholar 

  50. Kreimeier U, Messmer K (2002) Small-volume resuscitation: from experimental evidence to clinical routine. Advantages and disadvantages of hypertonic solutions. Acta Anaesthesiol Scand 46:625–638

    CAS  PubMed  Google Scholar 

  51. Walsh JC, Kramer GC (1991) Resuscitation of hypovolemic sheep with hypertonic saline/dextran: the role of dextran. Circ Shock 34:336–343

    CAS  PubMed  Google Scholar 

  52. Kien ND, Reitan JA, White DA, Wu CH, Eisele JH (1991) Cardiac contractility and blood flow distribution following resuscitation with 7.5% hypertonic saline in anesthetized dogs. Circ Shock 35:109–116

    PubMed  Google Scholar 

  53. Welte M, Goresch T, Frey L, Holzer K, Zwissler B, Messmer K (1995) Hypertonic saline dextran does not increase cardiac contractile function during small volume resuscitation from hemorrhagic shock in anesthetized pigs. Anesth Analg 80:1099–1107

    CAS  PubMed  Google Scholar 

  54. Franz A, Braunlich P, Gamsjager T, Felfernig M, Gustorff B, Kozek-Langenecker SA (2001) The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg 92:1402–1407

    CAS  PubMed  Google Scholar 

  55. Dieterich HJ (2003) Recent developments in European colloid solutions. J Trauma 54:S26–S30

    CAS  PubMed  Google Scholar 

  56. McGrath AM, Conhaim RL, Myers GA, Harms BA (1996) Pulmonary vascular filtration of starch-based macromolecules: effects on lung fluid balance. J Surg Res 65:128–134

    Article  CAS  PubMed  Google Scholar 

  57. Zikria BA, King TC, Stanford J, Freeman HP (1989) A biophysical approach to capillary permeability. Surgery 105:625–631

    CAS  PubMed  Google Scholar 

  58. Allison KP, Gosling P, Jones S, Pallister I, Porter KM (1999) Randomized trial of hydroxyethyl starch versus gelatine for trauma resuscitation. J Trauma 47:1114–1121

    CAS  PubMed  Google Scholar 

  59. Cohn SM (2003) Oxygen therapeutics in trauma and surgery. J Trauma 54:S193–S198

    PubMed  Google Scholar 

  60. Proctor KG (2003) Blood substitutes and experimental models of trauma. J Trauma 54:S106–S109

    PubMed  Google Scholar 

  61. Loscalzo J (1997) Nitric oxide binding and the adverse effects of cell-free hemoglobins: what makes us different from earthworms. J Lab Clin Med 129:580–583

    CAS  PubMed  Google Scholar 

  62. Gulati A, Barve A, Sen AP (1999) Pharmacology of hemoglobin therapeutics. J Lab Clin Med 133:112–119

    CAS  PubMed  Google Scholar 

  63. Kasper SM, Grune F, Walter M, Amr N, Erasmi H, Buzello W (1998) The effects of increased doses of bovine hemoglobin on hemodynamics and oxygen transport in patients undergoing preoperative hemodilution for elective abdominal aortic surgery. Anesth Analg 87:284–291

    CAS  PubMed  Google Scholar 

  64. Doherty DH, Doyle MP, Curry SR, Vali RJ, Fattor TJ, Olson JS, Lemon DD (1998) Rate of reaction with nitric oxide determines the hypertensive effect of cell-free hemoglobin. Nat Biotechnol 16:672–676

    CAS  PubMed  Google Scholar 

  65. Keipert PE, Gonzales A, Gomez CL, MacDonald VW, Hess JR, Winslow RM (1993) Acute changes in systemic blood pressure and urine output of conscious rats following exchange transfusion with diaspirin-crosslinked hemoglobin solution. Transfusion 33:701–708

    Article  CAS  PubMed  Google Scholar 

  66. Su D, Roth RI, Levin J (1999) Hemoglobin infusion augments the tumor necrosis factor response to bacterial endotoxin (lipopolysaccharide) in mice. Crit Care Med 27:771–778

    Article  CAS  PubMed  Google Scholar 

  67. Zimmerman JJ (1999) Deciphering the dark side of free hemoglobin in sepsis. Crit Care Med 27:685–686

    Article  CAS  PubMed  Google Scholar 

  68. Hess JR (1996) Blood substitutes. Semin Hematol 33:369–378

    CAS  PubMed  Google Scholar 

  69. Sloan EP, Koenigsberg M, Gens D, Cipolle M, Runge J, Mallory MN, Rodman G Jr (1999) Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock: a randomized controlled efficacy trial. JAMA 282:1857–1864

    CAS  PubMed  Google Scholar 

  70. Malhotra AK, Kelly ME, Miller PR, Hartman JC, Fabian TC, Proctor KG (2003) Resuscitation with a novel hemoglobin-based oxygen carrier in a Swine model of uncontrolled perioperative hemorrhage. J Trauma 54:915–924

    PubMed  Google Scholar 

  71. Spahn DR, van Brempt R, Theilmeier G, Reibold JP, Welte M, Heinzerling H, Birck KM, Keipert PE, Messmer K, Heinzerling H, Birck KM, Keipert PE, Messmer K (1999) Perflubron emulsion delays blood transfusions in orthopedic surgery. European Perflubron Emulsion Study Group. Anesthesiology 91:1195–1208

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Vollmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollmar, B., Menger, M.D. Volume replacement and microhemodynamic changes in polytrauma. Langenbecks Arch Surg 389, 485–491 (2004). https://doi.org/10.1007/s00423-004-0473-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-004-0473-z

Keywords

Navigation