Skip to main content

Advertisement

Log in

Placental protein 13 (galectin-13) has decreased placental expression but increased shedding and maternal serum concentrations in patients presenting with preterm pre-eclampsia and HELLP syndrome

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Placental protein 13 (PP13) is a galectin expressed by the syncytiotrophoblast. Women who subsequently develop preterm pre-eclampsia have low first trimester maternal serum PP13 concentrations. This study revealed that third trimester maternal serum PP13 concentration increased with gestational age in normal pregnancies (p < 0.0001), and it was significantly higher in women presenting with preterm pre-eclampsia (p = 0.02) and hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome (p = 0.01) than in preterm controls. Conversely, placental PP13 mRNA (p = 0.03) and protein, as well as cytoplasmic PP13 staining of the syncytiotrophoblast (p < 0.05) was decreased in these pathological pregnancies compared to controls. No differences in placental expression and serum concentrations of PP13 were found at term between patients with pre-eclampsia and control women. In contrast, the immunoreactivity of the syncytiotrophoblast microvillous membrane was stronger in both term and preterm pre-eclampsia and HELLP syndrome than in controls. Moreover, large syncytial cytoplasm protrusions, membrane blebs and shed microparticles strongly stained for PP13 in pre-eclampsia and HELLP syndrome. In conclusion, parallel to its decreased placental expression, an augmented membrane shedding of PP13 contributes to the increased third trimester maternal serum PP13 concentrations in women with preterm pre-eclampsia and HELLP syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Myatt L (2002) Role of placenta in preeclampsia. Endocrine 19:103–111

    Article  PubMed  CAS  Google Scholar 

  2. Sibai B, Dekker G, Kupferminc M (2005) Pre-eclampsia. Lancet 365:785–799

    PubMed  Google Scholar 

  3. Lyall F (2005) Priming and remodelling of human placental bed spiral arteries during pregnancy—a review. Placenta 26(Suppl A):S31–S36

    Article  PubMed  Google Scholar 

  4. Espinoza J, Romero R, Mee KY et al (2006) Normal and abnormal transformation of the spiral arteries during pregnancy. J Perinat Med 34:447–458

    Article  PubMed  Google Scholar 

  5. Torry DS, Wang HS, Wang TH et al (1998) Preeclampsia is associated with reduced serum levels of placenta growth factor. Am J Obstet Gynecol 179:1539–1544

    Article  PubMed  CAS  Google Scholar 

  6. Maynard SE, Min JY, Merchan J et al (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658

    PubMed  CAS  Google Scholar 

  7. Chaiworapongsa T, Romero R, Espinoza J et al (2004) Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am J Obstet Gynecol 190:1541–1547

    Article  PubMed  CAS  Google Scholar 

  8. Venkatesha S, Toporsian M, Lam C et al (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12:642–649

    Article  PubMed  CAS  Google Scholar 

  9. Roberts JM, Taylor RN, Musci TJ et al (1989) Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol 161:1200–1204

    PubMed  CAS  Google Scholar 

  10. Redman CW, Sacks GP, Sargent IL (1999) Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 180:499–506

    Article  PubMed  CAS  Google Scholar 

  11. Gervasi MT, Chaiworapongsa T, Pacora P et al (2001) Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am J Obstet Gynecol 185:792–797

    Article  PubMed  CAS  Google Scholar 

  12. Jauniaux E, Poston L, Burton GJ (2006) Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Updat 12:747–755

    Article  CAS  Google Scholar 

  13. Myatt L, Miodovnik M (1999) Prediction of preeclampsia. Semin Perinatol 23:45–57

    Article  PubMed  CAS  Google Scholar 

  14. von Dadelszen P, Magee LA, Roberts JM (2003) Subclassification of preeclampsia. Hypertens Pregnancy 22:143–148

    Article  Google Scholar 

  15. Moldenhauer JS, Stanek J, Warshak C et al (2003) The frequency and severity of placental findings in women with preeclampsia are gestational age dependent. Am J Obstet Gynecol 189:1173–1177

    Article  PubMed  Google Scholar 

  16. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308:1592–1594

    Article  PubMed  CAS  Google Scholar 

  17. Sebire NJ, Goldin RD, Regan L (2005) Term preeclampsia is associated with minimal histopathological placental features regardless of clinical severity. J Obstet Gynaecol 25:117–118

    Article  PubMed  CAS  Google Scholar 

  18. Goswami D, Tannetta DS, Magee LA et al (2006) Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta 27:56–61

    Article  PubMed  CAS  Google Scholar 

  19. Egbor M, Ansari T, Morris N et al (2006) Morphometric placental villous and vascular abnormalities in early- and late-onset pre-eclampsia with and without fetal growth restriction. BJOG 113:580–589

    Article  PubMed  CAS  Google Scholar 

  20. Ness RB, Roberts JM (1996) Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol 175:1365–1370

    Article  PubMed  CAS  Google Scholar 

  21. Zwahlen M, Gerber S, Bersinger NA (2007) First trimester markers for pre-eclampsia: placental vs. non-placental protein serum levels. Gynecol Obstet Invest 63:15–21

    Article  PubMed  Google Scholar 

  22. Nicolaides KH, Bindra R, Turan OM et al (2006) A novel approach to first-trimester screening for early pre-eclampsia combining serum PP-13 and Doppler ultrasound. Ultrasound Obstet Gynecol 27:13–17

    Article  PubMed  CAS  Google Scholar 

  23. Spencer K, Cowans NJ, Chefetz I et al (2007) First-trimester maternal serum PP-13, PAPP-A and second-trimester uterine artery Doppler pulsatility index as markers of pre-eclampsia. Ultrasound Obstet Gynecol 29:128–134

    Article  PubMed  CAS  Google Scholar 

  24. Chafetz I, Kuhnreich I, Sammar M et al (2007) First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol 197:35–37

    Article  PubMed  Google Scholar 

  25. Romero R, Kusanovic JP, Than NG et al (2008) First trimester maternal serum PP13 in the risk assessment for preeclampsia. Am J Obstet Gynecol 199(2):122.e1–122.e11

    Article  PubMed  Google Scholar 

  26. Bohn H, Kraus W, Winckler W (1983) Purification and characterization of two new soluble placental tissue proteins (PP13 and PP17). Oncodev Biol Med 4:343–350

    PubMed  CAS  Google Scholar 

  27. Than GN, Bohn H, Szabo DG (1993) Advances in pregnancy-related protein research. CRC, Boca Raton

    Google Scholar 

  28. Than NG, Sumegi B, Than GN et al (1999) Isolation and sequence analysis of a cDNA encoding human placental tissue protein 13 (PP13), a new lysophospholipase, homologue of human eosinophil Charcot-Leyden Crystal protein. Placenta 20:703–710

    Article  PubMed  CAS  Google Scholar 

  29. Than NG, Pick E, Bellyei S et al (2004) Functional analyses of placental protein 13/galectin-13. Eur J Biochem 271:1065–1078

    Article  PubMed  CAS  Google Scholar 

  30. Burger O, Pick E, Zwickel J et al (2004) Placental protein 13 (PP-13): effects on cultured trophoblasts, and its detection in human body fluids in normal and pathological pregnancies. Placenta 25:608–622

    Article  PubMed  CAS  Google Scholar 

  31. Visegrady B, Than NG, Kilar F et al (2001) Homology modelling and molecular dynamics studies of human placental tissue protein 13 (galectin-13). Protein Eng 14:875–880

    Article  PubMed  CAS  Google Scholar 

  32. Barondes SH, Castronovo V, Cooper DN et al (1994) Galectins: a family of animal beta-galactoside-binding lectins. Cell 76:597–598

    Article  PubMed  CAS  Google Scholar 

  33. Papp Cs, Szabo G, Toth-Pal E et al (1991) Fetal growth rate and its variations 1988/89. Orv Hetil 132:1865–1870

    PubMed  CAS  Google Scholar 

  34. ACOG (2002) ACOG practice bulletin: Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol 99:159–167

    Article  Google Scholar 

  35. Barton JR, Sibai BM (2004) Diagnosis and management of hemolysis, elevated liver enzymes, and low platelets syndrome. Clin Perinatol 31:807–833 vii

    Article  PubMed  Google Scholar 

  36. Khong TY (2001) A topographical and clinical approach to examination of the placenta. Pathology 33:174–186

    Article  PubMed  CAS  Google Scholar 

  37. Redline RW, Boyd T, Campbell V et al (2004) Maternal vascular underperfusion: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol 7:237–249

    PubMed  Google Scholar 

  38. Langston C, Kaplan C, Macpherson T et al (1997) Practice guideline for examination of the placenta: developed by the Placental Pathology Practice Guideline Development Task Force of the College of American Pathologists. Arch Pathol Lab Med 121:449–476

    PubMed  CAS  Google Scholar 

  39. Hargitai B, Marton T, Cox PM (2004) Best practice no 178. Examination of the human placenta. J Clin Pathol 57:785–792

    Article  PubMed  CAS  Google Scholar 

  40. Ogawa M, Yanoma S, Nagashima Y et al (2007) Paradoxical discrepancy between the serum level and the placental intensity of PP5/TFPI-2 in preeclampsia and/or intrauterine growth restriction: possible interaction and correlation with glypican-3 hold the key. Placenta 28:224–232

    Article  PubMed  CAS  Google Scholar 

  41. Paradela A, Bravo SB, Henriquez M et al (2005) Proteomic analysis of apical microvillous membranes of syncytiotrophoblast cells reveals a high degree of similarity with lipid rafts. J Proteome Res 4:2435–2441

    Article  PubMed  CAS  Google Scholar 

  42. Jones CJ, Carter AM, Aplin JD et al (2007) Glycosylation at the fetomaternal interface in hemomonochorial placentae from five widely separated species of mammal: is there evidence for convergent evolution? Cells Tissues Organs 185:269–284

    Article  PubMed  CAS  Google Scholar 

  43. Nickel W (2005) Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic 6:607–614

    Article  PubMed  CAS  Google Scholar 

  44. Danielsen EM, Hansen GH (2006) Lipid raft organization and function in brush borders of epithelial cells. Mol Membr Biol 23:71–79

    Article  PubMed  CAS  Google Scholar 

  45. Aplin JD, Straszewski-Chavez SL, Kalionis B et al (2006) Trophoblast differentiation: progenitor cells, fusion and migration—a workshop report. Placenta 27(Suppl A):S141–S143

    Article  PubMed  Google Scholar 

  46. Knerr I, Beinder E, Rascher W (2002) Syncytin, a novel human endogenous retroviral gene in human placenta: evidence for its dysregulation in preeclampsia and HELLP syndrome. Am J Obstet Gynecol 186:210–213

    Article  PubMed  CAS  Google Scholar 

  47. Lee X, Keith JC Jr, Stumm N et al (2001) Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia. Placenta 22:808–812

    Article  PubMed  CAS  Google Scholar 

  48. Langbein M, Strick R, Strissel PL et al (2008) Impaired cytotrophoblast cell-cell fusion is associated with reduced Syncytin and increased apoptosis in patients with placental dysfunction. Mol Reprod Dev 75:175–183

    Article  PubMed  Google Scholar 

  49. Benirschke K, Kaufmann P (2000) Pathology of the human placenta, 4th edn. Springer, New York

    Google Scholar 

  50. Gude NM, Roberts CT, Kalionis B et al (2004) Growth and function of the normal human placenta. Thromb Res 114:397–407

    Article  PubMed  CAS  Google Scholar 

  51. Bischof P, Irminger-Finger I (2005) The human cytotrophoblastic cell, a mononuclear chameleon. Int J Biochem Cell Biol 37:1–16

    Article  PubMed  CAS  Google Scholar 

  52. Jones CJ, Fox H (1980) An ultrastructural and ultrahistochemical study of the human placenta in maternal pre-eclampsia. Placenta 1:61–76

    Article  PubMed  CAS  Google Scholar 

  53. de Luca Brunori I, Battini L, Brunori E et al (2005) Placental barrier breakage in preeclampsia: ultrastructural evidence. Eur J Obstet Gynecol Reprod Biol 118:182–189

    Article  PubMed  Google Scholar 

  54. Crocker I (2007) Pre-eclampsia and villous trophoblast turnover: perspectives and possibilities. Placenta 28(Suppl A):S4–S13

    Article  PubMed  Google Scholar 

  55. Redman CW, Sargent IL (2007) Microparticles and immunomodulation in pregnancy and pre-eclampsia. J Reprod Immunol 76:61–67

    Article  PubMed  CAS  Google Scholar 

  56. Mayhew TM, Wadrop E, Simpson RA (1994) Proliferative versus hypertrophic growth in tissue subcompartments of human placental villi during gestation. J Anat 184(Pt 3):535–543

    PubMed  Google Scholar 

  57. Rigo J Jr, Nagy B, Fintor L et al (2000) Maternal and neonatal outcome of preeclamptic pregnancies: the potential roles of factor V Leiden mutation and 5,10 methylenetetrahydrofolate reductase. Hypertens Pregnancy 19:163–172

    Article  PubMed  CAS  Google Scholar 

  58. Lachmeijer AM, Arngrimsson R, Bastiaans EJ et al (2001) A genome-wide scan for preeclampsia in the Netherlands. Eur J Hum Genet 9:758–764

    Article  PubMed  CAS  Google Scholar 

  59. van Dijk M, Mulders J, Poutsma A, Könst AA et al (2005) Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 37:514–519

    Article  PubMed  Google Scholar 

  60. Sziller I, Babula O, Hupuczi P et al (2007) Mannose-binding lectin (MBL) codon 54 gene polymorphism protects against development of pre-eclampsia, HELLP syndrome and pre-eclampsia-associated intrauterine growth restriction. Mol Hum Reprod 13:281–285

    Article  PubMed  CAS  Google Scholar 

  61. Oudejans CB, van DM, Oosterkamp M et al (2007) Genetics of preeclampsia: paradigm shifts. Hum Genet 120:607–612

    Article  PubMed  Google Scholar 

  62. Cross JC (2003) The genetics of pre-eclampsia: a feto-placental or maternal problem? Clin Genet 64:96–103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Zsolt Csapo and Dr. Katalin Hertelendy for their support in the Histopathological and Chemistry Laboratories; to Dr. Timea Kovats, Dr. Julia Dienes, Dr. Maria Lengyel, Katalin Karaszi, Krisztina Mekli, and Istvan Szabo for their helpful technical assistance; to Julia Olah, Katalin Lang, Katalin Raum, and all the colleagues in the laboratories, operating theatres and Labor and Delivery Unit of the First Department of Obstetrics and Gynecology for their help with the specimens. The authors thank Dr. Offer Erez, Dr. Chong Jai Kim, Dr. Derek Wildman, and Sara Tipton for their critical reading of the manuscript and valuable advices.

The Fluorchem SP CCD imaging system was a generous donation of the Hungarian Terry Fox Foundation to the First Department of Obstetrics and Gynecology. N.G.T. is grateful to the Hungarian Academy of Sciences for the János Bolyai Scholarship.

Funding

This research was funded by the Hungarian Országos Tudományos Kutatási Alapprogramok (T/046473 to N.G.T.) and by grants from the European Union (FP6, “Pregenesys - 037244” to H.M. and N.G.T.) and the Israel Chief Scientist (31851, 37324, 14128 to H.M.).

Conflict of interest statement

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandor Gabor Than.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Than, N.G., Abdul Rahman, O., Magenheim, R. et al. Placental protein 13 (galectin-13) has decreased placental expression but increased shedding and maternal serum concentrations in patients presenting with preterm pre-eclampsia and HELLP syndrome. Virchows Arch 453, 387–400 (2008). https://doi.org/10.1007/s00428-008-0658-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-008-0658-x

Keywords

Navigation