Skip to main content
Log in

Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The stiffness and structural integrity of the arterial wall depends primarily on the organization of the extracellular matrix and the cells that fashion and maintain this matrix. Fundamental to the latter is a delicate balance in the continuous production and removal of structural constituents and the mechanical state in which such turnover occurs. Perturbations in this balance due to genetic mutations, altered hemodynamics, or pathological processes result in diverse vascular phenotypes, many of which have yet to be well characterized biomechanically. In this paper, we emphasize the particular need to understand regional variations in the biaxial biomechanical properties of central arteries in health and disease and, in addition, the need for standardization in the associated biaxial testing and quantification. As an example of possible experimental methods, we summarize testing protocols that have evolved in our laboratory over the past 8 years. Moreover, we note advantages of a four fiber family stress–stretch relation for quantifying passive biaxial behaviors, the use of stored energy as a convenient scalar metric of the associated material stiffness, and the utility of appropriate linearizations of the nonlinear, anisotropic relations both for purposes of comparison across laboratories and to inform computational fluid-solid-interaction models. We conclude that, notwithstanding prior advances, there remain many opportunities to advance our understanding of arterial mechanics and mechanobiology, particularly via the diverse genetic, pharmacological, and surgical models that are, or soon will be, available in the mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Chart 1

Similar content being viewed by others

References

  1. Adji, A., M. F. O’Rourke, and M. Namasivayam. Arterial stiffness, its assessment, prognostic value, and implications for treatment. Am. J. Hypertens. 24:5–17, 2011.

    Article  PubMed  Google Scholar 

  2. Agianniotis, A., A. Rachev, and N. Stergiopulos. Active axial stress in mouse aorta. J. Biomech. 45:1924–1927, 2012.

    Article  PubMed  CAS  Google Scholar 

  3. Agianniotis, A., and N. Stergiopulos. Wall properties of the apolipoprotein E-deficient mouse aorta. Atherosclerosis 223:314–320, 2012.

    Article  PubMed  CAS  Google Scholar 

  4. Baek, S., R. L. Gleason, K. R. Rajagopal, and J. D. Humphrey. Theory of small on large: potential utility in computations of fluid–solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196:3070–3078, 2007.

    Article  Google Scholar 

  5. Bersi, M. R., M. J. Collins, E. Wilson, and J. D. Humphrey. Disparate changes in the mechanical properties of murine carotid arteries and aorta in response to chronic infusion of angiotensin-II. Int. J. Adv. Eng. Sci. Appl. Math. 4:228–240, 2012.

    Google Scholar 

  6. Cardamone, L., A. Valentín, J. F. Eberth, and J. D. Humphrey. Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle. Math. Med. Biol. 27:343–371, 2010.

    Google Scholar 

  7. Carta, L., J. E. Wagenseil, R. H. Knutsen, B. Mariko, G. Faury, E. C. Davis, B. Starcher, R. P. Mecham, and F. Ramirez. Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler. Thromb. Vasc. Biol. 29:2083–2089, 2009.

    Article  PubMed  CAS  Google Scholar 

  8. Cheng, J. K., I. Stoilov, R. P. Mecham, and J. E. Wagenseil. A fiber-based constitutive model predicts changes in amount and organization of matrix proteins with development and disease in the mouse aorta. Biomech. Model. Mechanobiol., 2012 [Epub ahead of print].

  9. Chung, A. W. Y., H. H. C. Yang, and C. van Breeman. Imbalanced synthesis of cyclooxygenase-derived thromboxane A2 and prostacyclin compromises vasomotor function of the thoracic aorta in Marfan syndrome. Brit. J. Pharmacol. 152:305–312, 2007.

    Article  CAS  Google Scholar 

  10. Chung, A. W. Y., K. A. Yeung, G. G. S. Sandor, D. P. Judge, H. C. Dietz, and C. van Breemen. Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome. Circ. Res. 101:512–522, 2007.

    Article  PubMed  CAS  Google Scholar 

  11. Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108:189–192, 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Collins, M. J., M. R. Bersi, E. Wilson, and J. D. Humphrey. Mechanical properties of suprarenal and infrarenal abdominal aorta: implications for mouse models of aneurysms. Med. Eng. Phys. 33:1262–1269, 2011.

    Article  PubMed  CAS  Google Scholar 

  13. Cox, R. H. Regional variation of series elasticity in canine arterial smooth muscle. Am. J. Physiol. Heart. Circ. Physiol. 234:H542–H551, 1978.

    CAS  Google Scholar 

  14. Cox, R. H. Comparison of arterial wall mechanics using ring and cylindrical segments. Am. J. Physiol. Heart Circ. Physiol. 244:H298–H303, 1983.

    CAS  Google Scholar 

  15. Dingemans, K. P., P. Teeling, J. H. Lagendijk, and A. E. Becker. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat. Rec. 258:1–14, 2000.

    Article  PubMed  CAS  Google Scholar 

  16. Dobrin, P. B. Biaxial anisotropy of dog carotid artery: estimation of circumferential elastic modulus. J. Biomech. 19:351–358, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Dye, W. W., R. L. Gleason, E. Wilson, and J. D. Humphrey. Altered biomechanical properties of carotid arteries in two mouse models of muscular dystrophy. J. Appl. Physiol. 103:664–672, 2007.

    Article  PubMed  CAS  Google Scholar 

  18. Eberth, J. F., L. Cardamone, and J. D. Humphrey. Evolving biaxial mechanical properties of mouse carotid arteries in hypertension. J. Biomech. 44:2532–2537, 2011.

    Article  PubMed  CAS  Google Scholar 

  19. Eberth, J. F., V. C. Gresham, A. K. Reddy, N. Popovic, E. Wilson, and J. D. Humphrey. Importance of pulsatility in hypertensive carotid artery growth and remodeling. J. Hyptertens. 27:2010–2021, 2009.

    Article  CAS  Google Scholar 

  20. Eberth, J. F., N. Popovic, V. C. Gresham, E. Wilson, and J. D. Humphrey. Time course of carotid artery growth and remodeling in response to altered pulsatility. Am. J. Physiol. Heart. Circ. Physiol. 299:H1875–H1883, 2010.

    Article  PubMed  CAS  Google Scholar 

  21. Eberth, J. F., A. I. Taucer, E. Wilson, and J. D. Humphrey. Mechanics of carotid arteries in a mouse model of Marfan syndrome. Ann. Biomed. Eng. 37:1093–1104, 2009.

    Article  PubMed  CAS  Google Scholar 

  22. Ferruzzi, J., M. J. Collins, A. T. Yeh, and J. D. Humphrey. Mechanical assessment of elastin integrity in fibrillin-1-deficient carotid arteries: implications for Marfan syndrome. Cardiovasc. Res. 92:287–295, 2011.

    Article  PubMed  CAS  Google Scholar 

  23. Ferruzzi, J., D. A. Vorp, and J. D. Humphrey. On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J. R. Soc. Interface 8:435–450, 2011.

    Article  PubMed  CAS  Google Scholar 

  24. Figueroa, C. A., S. Baek, C. A. Taylor, and J. D. Humphrey. A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput. Methods Appl. Mech. Eng. 198:3583–3602, 2009.

    Article  PubMed  Google Scholar 

  25. Fleenor, B. S., K. D. Marshall, J. R. Durrant, L. A. Lesniewski, and D. R. Seals. Arterial stiffening with ageing is associated with transforming growth factor-β1-related changes in adventitial collagen: reversal by aerobic exercise. J. Physiol. 588:3971–3982, 2010.

    Article  PubMed  CAS  Google Scholar 

  26. Fung, Y. C. Elasticity of soft tissues in simple elongation. Am. J. Physiol. 213:1532–1544, 1967.

    PubMed  CAS  Google Scholar 

  27. Fung, Y. C. Biorheology of soft tissues. Biorheology 10:139–155, 1973.

    PubMed  CAS  Google Scholar 

  28. Fung, Y. C. Biomechanics: Motion, Flow, Stress, and Growth. NY: Springer, 1990.

    Google Scholar 

  29. Fung, Y. C., K. Fronek, and P. Patitucci. Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. Heart Circ. Physiol. 237:H620–H631, 1979.

    CAS  Google Scholar 

  30. Genovese, K., M. J. Collins, Y. U. Lee, and J. D. Humphrey. Regional finite strains in an angiotensin-II infusion model of dissecting abdominal aortic aneurysms. J. Cardiovasc. Eng. Tech. 3:194–202, 2012.

    Article  Google Scholar 

  31. Gleason, R. L., W. W. Dye, E. Wilson, and J. D. Humphrey. Quantification of the mechanical behavior of carotid arteries from wild-type, dystrophin-deficient, and sarcoglycan-delta knockout mice. J. Biomech. 41:3213–3218, 2008.

    Article  PubMed  Google Scholar 

  32. Gleason, R. L., S. P. Gray, E. Wilson, and J. D. Humphrey. A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J. Biomech. Eng. 126:787–795, 2004.

    Article  PubMed  CAS  Google Scholar 

  33. Guo, X., and G. S. Kassab. Variation in mechanical properties along the length of the aorta in C57bl/6 mice. Am. J. Physiol. Heart Circ. Physiol. 285:H2614–H2622, 2003.

    PubMed  CAS  Google Scholar 

  34. Guo, X., Y. Kono, R. Mattrey, and G. S. Kassab. Morphometry and strain distribution of the C57BL/6 mouse aorta. Am. J. Physiol. Heart Circ. Physiol. 283:H1829–H1837, 2002.

    PubMed  CAS  Google Scholar 

  35. Hansen, L., W. Wan, and R. L. Gleason. Microstructurally motivated constitutive modeling of mouse arteries cultured under altered axial stretch. J. Biomech. Eng. 131:101015, 2009.

    Article  PubMed  Google Scholar 

  36. Hartner, A., L. Schaefer, M. Porst, N. Cordasic, A. Gabriel, B. Klanke, D. P. Reinhardt, and K. F. Hilgers. Role of fibrillin-1 in hypertensive and diabetic glomerular disease. Am. J. Physiol. Renal Physiol. 290:F1329–F1336, 2006.

    Article  PubMed  CAS  Google Scholar 

  37. Haskett, D., E. Speicher, M. Fouts, D. Larson, M. Azhar, U. Utzinger, and J. P. Vande Geest. The effects of angiotensin II on the coupled microstructural and biomechanical response of C57BL/6 mouse aorta. J. Biomech. 45:772–779, 2012.

    Google Scholar 

  38. Haskett, D., J. J. Doyle, C. Gard, H. Chen, C. Ball, M. A. Estabrook, A. C. Encinas, H. C. Dietz, U. Utzinger, J. P. Vande Geest, and M. Azhar. Altered tissue behavior of a non-aneurysmal descending thoracic aorta in the mouse model of Marfan syndrome. Cell Tissue Res. 347: 267–277, 2012.

  39. Hayenga, H. N., J.-J. Hu, C. A. Meyer, E. Wilson, T. W. Hein, L. Kuo, and J. D. Humphrey. Differential progressive remodeling of coronary and cerebral arteries and arterioles in an aortic coarctation model of hypertension. Front. Physiol. 3:420, 2012.

    Article  PubMed  CAS  Google Scholar 

  40. Hayenga, H. N., A. Trache, J. Trzeciakowski, and J. D. Humphrey. Regional atherosclerotic plaque properties in ApoE−/− mice measured by atomic force, immunofluroescence, and light microscopy. J. Vasc. Res. 48:495–504, 2011.

    Article  PubMed  CAS  Google Scholar 

  41. Holzapfel, G. A. Determination of material models for arterial walls from uniaxial extension tests and histological structure. J. Theor. Biol. 238:290–302, 2006.

    Article  PubMed  Google Scholar 

  42. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  43. Holzapfel, G. A., G. Sommer, M. Auer, P. Regitnig, and R. W. Ogden. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann. Biomed. Eng. 35:530–545, 2007.

    Article  PubMed  Google Scholar 

  44. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  PubMed  CAS  Google Scholar 

  45. Hu, J.-J., A. Ambrus, T. W. Fossum, M. W. Miller, J. D. Humphrey, and E. Wilson. Time courses of growth and remodeling of porcine aortic media during hypertension: a quantitative immunohistochemical examination. J. Histochem. Cytochem. 56:359–370, 2008.

    Article  PubMed  CAS  Google Scholar 

  46. Humphrey, J. D. Stress, strain, and mechanotransduction in cells. J. Biomech. Eng. 123:638–641, 2001.

    Article  PubMed  CAS  Google Scholar 

  47. Humphrey, J. D. Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels. Cell Biochem. Biophys. 50:53–78, 2008.

    Article  PubMed  CAS  Google Scholar 

  48. Humphrey, J. D. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension 52:195–200, 2008.

    Article  PubMed  CAS  Google Scholar 

  49. Humphrey, J. D. Cardiovascular Solid Mechanics. Cells, Tissues, and Organs. NY: Springer, 2002.

  50. Humphrey, J. D., and S. L. Delange. An Introduction to Biomechanics: Solids and Fluids, Analysis and Design. NY: Springer, 2004.

    Google Scholar 

  51. Humphrey, J. D., J. F. Eberth, W. W. Dye, and R. L. Gleason. Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42:1–8, 2009.

    Article  PubMed  CAS  Google Scholar 

  52. Humphrey, J. D., and K. R. Rajagopal. A constrained mixture model for growth and remodeling of soft tissues. Math. Model Methods Appl. Sci. 12:407–430, 2002.

    Article  Google Scholar 

  53. Huo, Y., X. Guo, and G. S. Kassab. The flow field along the entire length of mouse aorta and primary branches. Ann. Biomed. Eng. 36:685–699, 2008.

    Article  PubMed  Google Scholar 

  54. Kanematsu, Y., M. Kanematsu, C. Kurihara, T.-L. Tsou, Y. Nuki, E. I. Liang, H. Makino, and T. Hashimoto. Pharmacologically induced thoracic and abdominal aortic aneurysms in mice. Hypertension 55:1267–1274, 2010.

    Article  PubMed  CAS  Google Scholar 

  55. Karšaj, I., J. Sorić, and J. D. Humphrey. A 3-D framework for arterial growth and remodeling in response to altered hemodynamics. Int. J. Eng. Sci. 48:1357–1372, 2010.

    Article  PubMed  Google Scholar 

  56. Kroon, M. A constitutive model for smooth muscle including active tone and passive viscoelastic behaviour. Math. Med. Biol. 27:129–155, 2010.

    Article  PubMed  Google Scholar 

  57. Lakatta, E. G., M. Wang, and S. S. Najjar. Arterial aging and subclinical arterial disease are fundamentally intertwined at macroscopic and microscopic levels. Med. Clin. N. Am. 93:583–604, 2009.

    Article  PubMed  CAS  Google Scholar 

  58. Mariko, B., M. Pezet, B. Escoubet, S. Bouillot, J.-P. Andrieu, B. Starcher, D. Quaglino, M.-P. Jacob, P. Huber, F. Ramirez, and G. Faury. Fibrillin-1 genetic deficiency leads to pathological ageing of arteries in mice. J. Pathol. 224:33–44, 2011.

    Article  PubMed  CAS  Google Scholar 

  59. Masson, I., P. Boutouyrie, S. Laurent, J. D. Humphrey, and M. Zidi. Characterization of arterial wall mechanical properties and stresses from human clinical data. J. Biomech. 41:2618–2627, 2008.

    Article  PubMed  Google Scholar 

  60. Matlung, H. L., A. E. Neele, H. C. Groen, K. van Gaalen, B. G. Tuna, A. van Weert, J. de Vos, J. J. Wentzel, M. Hoogenboezem, J. D. van Buul, E. Vanbavel, and E. N. T. P. Bakker. Transglutaminase activity regulates atherosclerotic plaque composition at locations exposed to oscillatory shear stress. Atherosclerosis 224:355–362, 2012.

    Article  PubMed  CAS  Google Scholar 

  61. Milewicz, D. M., D.-C. Guo, V. Tran-Fadulu, A. L. Lafont, C. L. Papke, S. Inamoto, C. S. Kwartler, and H. Pannu. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu. Rev. Genomics Hum. Genet. 9:283–302, 2008.

    Article  PubMed  CAS  Google Scholar 

  62. Murtada, S.-I., M. Kroon, and G. A. Holzapfel. A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech. Model. Mechanobiol. 9:749–762, 2010.

    Article  PubMed  Google Scholar 

  63. Ning, J., S. Xu, Y. Wang, S. M. Lessner, M. A Sutton, K. Anderson, and J. E. Bischoff. Deformation measurements and material property estimation of mouse carotid artery using a microstructure-based constitutive relation. J. Biomech. Eng. 132:121010, 2010.

    Google Scholar 

  64. Pezet, M., M.-P. Jacob, B. Escoubet, D. Gheduzzi, E. Tillet, P. Perret, P. Huber, D. Quaglino, R. Vranckx, D. Y. Li, B. Starcher, W. A. Boyle, R. P. Mecham, and G. Faury. Elastin haplo-insufficiency induces alternative aging processes in the aorta. Rejuvenation Res. 11:97–112, 2008.

    Article  PubMed  CAS  Google Scholar 

  65. Rachev, A., and K. Hayashi. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27:459–468, 1999.

    Article  PubMed  CAS  Google Scholar 

  66. Safar, M. E. Arterial aging—hemodynamic changes and therapeutic options. Nat. Rev. Cardiol. 7:442–449, 2010.

    Article  PubMed  Google Scholar 

  67. Sakalihasan, N., R. Limet, and O. D. Defawe. Abdominal aortic aneurysm. Lancet 365:1577–1589, 2005.

    Article  PubMed  CAS  Google Scholar 

  68. Schildmeyer, L. A., R. Braun, G. Taffet, M. Debiasi, A. E. Burns, A. Bradley, and R. J. Schwartz. Impaired vascular contractility and blood pressure homeostasis in the smooth muscle alpha-actin null mouse. FASEB J. 14:2213–2220, 2000.

    Article  PubMed  CAS  Google Scholar 

  69. Schriefl, A. J., G. Zeindlinger, D. M. Pierce, P. Regitnig, and G. A. Holzapfel. Determination of the layer-specific distributed collagen fibre orientations in human thoracic and abdominal aortas and common iliac arteries. J. R. Soc. Interface 9:1275–1286, 2012.

    Article  PubMed  Google Scholar 

  70. Sommer, G., and G. A. Holzapfel. 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries. J. Mech. Behav. Biomed. Mater. 5:116–128, 2012.

    Article  PubMed  Google Scholar 

  71. Stålhand, J., A. Klarbring, and G. A. Holzapfel. A mechanochemical 3D continuum model for smooth muscle contraction under finite strains. J. Theor. Biol. 268:120–130, 2011.

    Article  PubMed  Google Scholar 

  72. Stevic, I., H. H. W. Chan, and A. K. C. Chan. Carotid artery dissections: thrombosis of the false lumen. Thromb. Res. 128:317–324, 2011.

    Article  PubMed  CAS  Google Scholar 

  73. Truesdell, C. and W. Noll. The nonlinear field theories of mechanics. In: Handbuch der Physik, edited by S. Flugge. Berlin: Springer, 1965.

  74. Van Loon, P., W. Klip, and E. L. Bradley. Length-force and volume-pressure relationships of arteries. Biorheology 14:181–201, 1977.

    PubMed  Google Scholar 

  75. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J. Biomech. Eng. 126:815–822, 2004.

    Article  PubMed  Google Scholar 

  76. Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39:2347–2354, 2006.

    Article  PubMed  Google Scholar 

  77. Wagenseil, J. E., C. H. Ciliberto, R. H. Knutsen, M. A. Levy, A. Kovacs, and R. P. Mecham. Reduced vessel elasticity alters cardiovascular structure and function in newborn mice. Circ. Res. 104:1217–1224, 2009.

    Article  PubMed  CAS  Google Scholar 

  78. Wagenseil, J. E., and R. P. Mecham. Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89:957–989, 2009.

    Article  PubMed  CAS  Google Scholar 

  79. Wagenseil, J. E., N. L. Nerurkar, R. H. Knutsen, R. J. Okamoto, D. Y. Li, and R. P. Mecham. Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am. J. Physiol. 289:H1209–H1217, 2005.

    Article  CAS  Google Scholar 

  80. Wagner, H. P., and J. D. Humphrey. Differential passive and active biaxial mechanical behaviors of muscular and elastic arteries: basilar versus common carotid. J. Biomech. Eng. 133:051009, 2011.

    Article  PubMed  CAS  Google Scholar 

  81. Wan, W., J. B. Dixon, and R. L. Gleason. Constitutive modeling of mouse carotid arteries using experimentally measured microstructural parameters. Biophys. J. 102:2916–2925, 2012.

    Article  PubMed  CAS  Google Scholar 

  82. Wan, W., H. Yanagisawa, and R. L. Gleason. Biomechanical and microstructural properties of common carotid arteries from fibulin-5 null mice. Ann. Biomed. Eng. 38:3605–3617, 2010.

    Article  PubMed  Google Scholar 

  83. Weiszäcker, H. W., H. Lambert, and K. Pascale. Analysis of the passive mechanical properties of rat carotid arteries. J. Biomech. 16:703–715, 1983.

    Article  Google Scholar 

  84. Wilson, J. S., S. Baek, and J. D. Humphrey. Importance of initial aortic properties on the evolving regional anisotropy, stiffness and wall thickness of human abdominal aortic aneurysms. J. R. Soc. Interface 9:2047–2058, 2012.

    Article  PubMed  CAS  Google Scholar 

  85. Xu, H., J.-J. Hu, J. D. Humphrey, and J.-C. Liu. Automated measurement and statistical modelling of elastic laminae in arteries. Comput. Methods Biomech. Biomed. Eng. 13:749–763, 2010.

    Article  Google Scholar 

  86. Zeinali-Davarani, S., J. Choi, and S. Baek. On parameter estimation for biaxial mechanical behavior of arteries. J. Biomech. 42:524–530, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by grants from the NIH (R01 HL-105297, R21 HL-107768). We are grateful for the insightful comments by the reviewers, which resulted in a significant revision to present more details on methods for testing and quantification that might help lead to increased standardization. JF and MRB thank Dr. Sara Roccabianca for providing an implementation of the theory of “small on large” that was integrated within our custom code for data analysis. JDH also acknowledges colleagues (Drs. Vince Gresham, Emily Wilson, and Alvin Yeh) and former students (Rudy L. Gleason, Ph.D., Wendy W. Dye, M.S., John F. Eberth, Ph.D., Heather N. Hayenga, Ph.D., Anne I. Taucer, M.S., and Melissa J. Collins, Ph.D) who contributed so much to this overall work on murine arterial mechanics and mechanobiology.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Humphrey.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

J. Ferruzzi and M. R. Bersi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferruzzi, J., Bersi, M.R. & Humphrey, J.D. Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models. Ann Biomed Eng 41, 1311–1330 (2013). https://doi.org/10.1007/s10439-013-0799-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0799-1

Keywords

Navigation