Skip to main content
Log in

Micro-structural and Biaxial Creep Properties of the Swine Uterosacral–Cardinal Ligament Complex

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The uterosacral ligament and cardinal ligament (USL/CL) complex is the major suspensory tissue of the uterus, cervix, and vagina. This tissue is subjected primarily to bi-axial forces in-vivo that significantly alter its structure and dimension over time, compromising its support function and leading to pelvic floor disorders. In this study, we present the first rigorous characterization of the collagen fiber microstructure and creep properties of the swine USL/CL complex by using scanning electron microscopy and planar biaxial testing in combination with three-dimensional digital image correlation. Collagen fiber bundles were found to be arranged into layers. Although the fiber bundles were oriented in multiple directions, 80.8% of them were aligned within ±45\(^{\circ }\) to the main in-vivo loading direction. The straightness parameter, defined as the ratio of the end-to-end distance of a fiber bundle to its length, varied from 0.28 to 1.00, with 95.2% fiber bundles having a straightness parameter between 0.60 and 1.00. Under constant equi-biaxial loads of 2 and 4 N, the USL/CL complex exhibited significant creep both along the main in-vivo loading direction (the parallel direction) and along the direction perpendicular to it (the perpendicular direction). Specifically, over a 120-min period, the mean strain increased by 20–34\(\%\) in the parallel direction and 33–41\(\%\) in the perpendicular direction. However, there was no statistically significant difference in creep strains observed after 120 min between the parallel and perpendicular directions for either the 2 or 4 N load case. Creep proceeded slightly faster in the perpendicular direction under the equi-biaxial load of 2 N than under the equi-biaxial load of 4 N (\(p=0.3696\)). It proceeded significantly faster in the parallel direction under the equi-biaxial loads of 2 N than under the equi-biaxial loads of 4 N (\(p=0.0284\)). Overall, our findings contribute to a greater understanding of the biomaterial properties of the USL/CL complex that is needed for the development of new surgical reconstruction methods and mesh materials for pelvic floor disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Anssari-Benam, A., D. L. Bader, and H. R. Screen. Anisotropic time-dependant behaviour of the aortic valve. J. Mech. Behav. Biomed. Mater. 4:1603–1610, 2011.

    Article  PubMed  Google Scholar 

  2. Barber, M. D., A. G. Visco, A. C. Weidner, C. L. Amundsen, and R. C. Bump. Bilateral uterosacral ligament vaginal vault suspension with site-specific endopelvic fascia defect repair for treatment of pelvic organ prolapse. Am. J. Obstet. Gynecol. 183:1402–1411, 2000.

    Article  CAS  PubMed  Google Scholar 

  3. Becker, W. R., and R. De Vita. Biaxial mechanical properties of swine uterosacral and cardinal ligaments. Biomech. Model. Mechanobiol. 14:549–560, 2014.

    Article  PubMed  Google Scholar 

  4. Cosson, M., P. Debodinance, M. Boukerrou, M. P. Chauvet, P. Lobry, G. Crepin, and A. Ego. Mechanical properties of synthetic implants used in the repair of prolapse and urinary incontinence in women: which is the ideal material? Int. Urogynecol. J. 14:169–178, 2003.

    Article  Google Scholar 

  5. Couri, B. M., A. T. Lenis, A. Borazjani, M. F. R. Paraiso, and M. S. Damaser. Animal models of female pelvic organ prolapse: lessons learned. Exp. Rev. Obstet. Gynecol. 7:249–260, 2012.

    Article  Google Scholar 

  6. De Vita, R., and W. S. Slaughter. A structural constitutive model for the strain rate dependent behavior of anterior cruciate ligaments. Int. J. Solids Struct. 43:1561–1570, 2006.

    Article  Google Scholar 

  7. DeLancey, J. O. Anatomic aspects of vaginal eversion after hysterectomy. Am. J. Obstet. Gynecol. 166:1717–1728, 1992.

    Article  CAS  PubMed  Google Scholar 

  8. Grashow, J. S., M. S. Sacks, J. Liao, and A. P. Yoganathan. Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann. Biomed. Eng. 34:1509–1518, 2006.

    Article  PubMed  Google Scholar 

  9. Gruber, D. D., W. B. Warner, E. D. Lombardini, C. M. Zahn, and J. L. Buller. Anatomical and histological examination of the porcine vagina and supportive structures: in search of an ideal model for pelvic floor disorder evaluation and management. Female Pelvic Med. Reconstr. Surg. 17:110–114, 2011.

    Article  PubMed  Google Scholar 

  10. Hendrix, S. L., A. Clark, I. Nygaard, A. Aragaki, V. Barnabei, and A. McTiernan. Pelvic organ prolapse in the Women’s Health Initiative: gravity and gravidity. Am. J. Obstet. Gynecol. 186:1160–1166, 2002.

    Article  PubMed  Google Scholar 

  11. Hingorani, R. V., P. P. Provenzano, R. S. Lakes, A. Escarcega, and R. Vanderby, Jr. Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann. Biomed. Eng. 32:306–312, 2004.

    Article  PubMed  Google Scholar 

  12. Jenkins, V. Uterosacral ligament fixation for vaginal vault suspension in uterine and vaginal vault prolapse. Am. J. Obstet. Gynecol. 177:1337–1344, 1997.

    Article  PubMed  Google Scholar 

  13. Li, X., J. A. Kruger, J. W. Jor, V. Wong, H. P. Dietz, M. P. Nash, and P. M. Nielsen. Characterizing the ex vivo mechanical properties of synthetic polypropylene surgical mesh. J. Mech. Behav. Biomed. Mater. 37:48–55, 2014.

    Article  PubMed  Google Scholar 

  14. Lin, L. L., J. Y. Phelps, and C. Y. Liu. Laparoscopic vaginal vault suspension using uterosacral ligaments: a review of 133 cases. J. Minim. Invasive. Gynecol. 12:216–220, 2005.

    Article  PubMed  Google Scholar 

  15. Lionello, G., C. Sirieix, and M. Baleani. An effective procedure to create a speckle pattern on biological soft tissue for digital image correlation measurements. J. Mech. Behav. Biomed. Mater. 39:1–8, 2014.

    Article  PubMed  Google Scholar 

  16. Luo, J., T. M. Smith, J. A. Ashton-Miller, and J. O. DeLancey. In vivo properties of uterine suspensory tissue in pelvic organ prolapse. J. Biomech. Eng. 136:021016–1–021016-6, 2014.

    Article  Google Scholar 

  17. MacLennan, A. H., A. W. Taylor, D. H. Wilson, and D. Wilson. The prevalence of pelvic floor disorders and their relationship to gender, age, parity and mode of delivery. Br. J. Obstet. Gynecol. 107:1460–1470, 2000.

    Article  CAS  Google Scholar 

  18. Mangera, A., A. J. Bullock, C. R. Chapple, and S. MacNeil. Are biomechanical properties predictive of the success of prostheses used in stress urinary incontinence and pelvic organ prolapse? A systematic review. Neurourol. Urodyn. 31:13–21, 2012.

    Article  PubMed  Google Scholar 

  19. Martins, P., A. L. Silva-Filho, A. M. R. M. Fonseca, A. Santos, L. Santos, T. Mascarenhas, R. M. N. Jorge, and A. M. Ferreira. Strength of round and uterosacral ligaments: a biomechanical study. Arch. Gynecol. Obstet. 287:313–318, 2013.

    Article  PubMed  Google Scholar 

  20. Mauri, A., M. Perrini, A. E. Ehret, D. S. De Focatiis, and E. Mazza. Time-dependent mechanical behavior of human amnion: macroscopic and microscopic characterization. Acta Biomater. 11:314–323, 2015.

    Article  PubMed  Google Scholar 

  21. Moalli, P. A., N. S. Howden, J. L. Lowder, J. Navarro, K. M. Debes, S. D. Abramowitch, and S. L. Woo. A rat model to study the structural properties of the vagina and its supportive tissues. Am. J. Obstet. Gynecol. 192:80–88, 2005.

    Article  PubMed  Google Scholar 

  22. Nygaard, I., M. D. Barber, K. L. Burgio, K. Kenton, S. Meikle, and J. Schaffer. et~al. Prevalence of symptomatic pelvic floor disorders in US women. JAMA 300:1311–1316, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olsen, A. L., V. J. Smith, J. O. Bergstrom, J. C. Colling, and A. L. Clark. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet. Gynecol. 89:501–506, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Provenzano, P., R. Lakes, T. Keenan, and R. Vanderby, Jr. Nonlinear ligament viscoelasticity. Ann. Biomed. Eng. 29:908–914, 2001.

    Article  CAS  PubMed  Google Scholar 

  25. Provenzano, P. P., and R. Vanderby. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon. Matrix Biol. 25:71–84, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Ramanah, R., M. B. Berger, B. M. Parratte, and J. O. DeLancey. Anatomy and histology of apical support: a literature review concerning cardinal and uterosacral ligaments. Inter. Urogynecol. J. 23:1483–1494, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Reay, N. H. J., J. C. Jones, L. J. Healy, S. King, S. Saini, and T. G. Shousha. Allen-Mersh, Pelvic connective tissue resilience decreases with vaginal delivery, menopause and uterine prolapse. Br. J. Surg. 90:466–472, 2003.

    Article  Google Scholar 

  28. Rezakhaniha, R., A. Agianniotis, J. T. C. Schrauwen, A. Griffa, D. Sage, C. V. C. Bouten, F. N. van de Vosse, M. Unser, and N. Stergiopulos. Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech. Model. Mechanobiol. 11:461–473, 2012.

    Article  CAS  PubMed  Google Scholar 

  29. Rivaux, G., C. Rubod, B. Dedet, M. Brieu, B. Gabriel, and M. Cosson. Comparative analysis of pelvic ligaments: a biomechanics study. Int. Urogynecol. J. 24:135–139, 2013.

    Article  PubMed  Google Scholar 

  30. Rubod, C., M. Boukerrou, M. Brieu, P. Dubois, and M. Cosson. Biomechanical properties of vaginal tissue. Part 1: new experimental protocol. J. Urol. 178:320–325, 2007.

    Article  PubMed  Google Scholar 

  31. Silva, W. A., R. N. Pauls, J. L. Segal, C. M. Rooney, S. D. Kleeman, and M. M. Karram. Uterosacral ligament vault suspension: five-year outcomes. Obstet. Gynecol. 108:255–263, 2006.

    Article  PubMed  Google Scholar 

  32. Smith, T. M., J. Luo, Y. Hsu, J. Ashton-Miller, J. O. Delancey. A novel technique to measure in vivo uterine suspensory ligament stiffness. Am. J. Obstet. Gynecol 209:484.e1–484.e7, 2013.

    Article  Google Scholar 

  33. Sopakayang, R., and R. De Vita. A mathematical model for relaxation, creep, and strain stiffening in parallel-fibered collagenous tissues. Med. Eng. Phys. 33:1056–1063, 2011.

    Article  PubMed  Google Scholar 

  34. Sopakayang, R., R. De Vita, A. L. Kwansa, and J. W. Freeman. Elastic and viscoelastic properties of a type I collagen fiber. J. Theor. Biol. 293:197–205, 2012.

    Article  CAS  PubMed  Google Scholar 

  35. Stella, J. A., J. Liao, and M. S. Sacks. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J. Biomech. 40:3169–3177, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Subak, L. L., L. E. Waetjen, S. van den Eeden, D. H. Thom, E. Vittinghoff, and J. S. Brown. Cost of pelvic organ prolapse surgery in the United States. Obstet. Gynecol. 98:646–651, 2001.

    CAS  PubMed  Google Scholar 

  37. Tan, T., F. M. Davis, D. D. Gruber, J. C. Massengill, J. L. Robertson, and R. De Vita. Histo-mechanical properties of the swine cardinal and uterosacral ligaments. J. Mech. Behav. Biomed. Mater. 42:129–137, 2015.

    Article  CAS  PubMed  Google Scholar 

  38. Thornton, G. M., A. Oliynyk, C. B. Frank, and N. G. Shrive. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J. Orthop. Res. 15:652–656, 1997.

    Article  CAS  PubMed  Google Scholar 

  39. Thornton, G. M., N. G. Shrive, and C. B. Frank. Altering ligament water content affects ligament pre-stress and creep behavior. J. Orthop. Res. 19:845–851, 2001.

    Article  CAS  PubMed  Google Scholar 

  40. Thornton, G. M., N. G. Shrive, and C. B. Frank. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model. J. Orthop. Res. 20:967–974, 2002.

    Article  CAS  PubMed  Google Scholar 

  41. Vardy, M. D., T. R. Gardner, F. Cosman, R. J. Scotti, M. S. Mikhail, A. O. Preiss-Bloom, J. K. Williams, J. M. Cline, and R. Lindsay. The effects of hormone replacement on the biomechanical properties of the uterosacral and round ligaments in the monkey model. Am. J. Obstet. Gynecol. 192:1741–1751, 2005.

    Article  CAS  PubMed  Google Scholar 

  42. Wu, J. M., A. F. Hundley, R. G. Fulton, and E. R. Myers. Forecasting the prevalence of pelvic floor disorders in US women, to 2050. Obstet. Gynecol. 114(2009):1278–1283, 2010.

    Google Scholar 

Download references

Acknowledgments

Funding was provided by NSF PECASE Grant No. 1150397.

Conflict of Interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella De Vita.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, T., Cholewa, N.M., Case, S.W. et al. Micro-structural and Biaxial Creep Properties of the Swine Uterosacral–Cardinal Ligament Complex. Ann Biomed Eng 44, 3225–3237 (2016). https://doi.org/10.1007/s10439-016-1661-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1661-z

Keywords

Navigation