Skip to main content
Log in

Epithelial to Mesenchymal Transition in Renal Cell Carcinoma: Implications for Cancer Therapy

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Epithelial-to-mesenchymal transition (EMT) is a developmentally vital reversible process by which fully differentiated cells lose their epithelial features and acquire a migratory mesenchymal phenotype. EMT contributes to the metastatic potential of tumors. The expression profile and other biological properties of EMT suggest potential targets for cancer therapy, including in renal-cell carcinoma (RCC). The preclinical and clinical results have substantiated the promises that dysregulated elements leading to EMT can be a potential target in RCC patients. In this study, we illustrated the pathogenic and prognostic role of EMT in RCC. In addition, we reconstructed, by literature analysis, the different pathways implicated in the EMT process, thus supporting the rational for future EMT-directed therapeutic approaches for RCC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sandock DS, Seftel AD, Resnick MI. A new protocol for the follow up of renal cell carcinoma based on pathological stage. J Urol. 1995;154:28–31.

    Article  CAS  PubMed  Google Scholar 

  2. He H, Magi-Galluzzi C. Epithelial-to-mesenchymal transition in renal neoplasms. Adv Anat Pathol. 2014;21:174–80.

    Article  CAS  PubMed  Google Scholar 

  3. Weygant N, Qu D, May R, Tierney RM, Berry WL, Zhao L, et al. DCLK1 is a broadly dysregulated target against epithelial–mesenchymal transition, focal adhesion, and stemness in clear cell renal carcinoma. Oncotarget. 2015;6:2193–205.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sampson VB, David JM, Puig I, Patil PU, de Herreros PU, Thomas GV, et al. Wilms’ tumor protein induces an epithelial–mesenchymal hybrid differentiation state in clear cell renal cell carcinoma. PLoS One. 2014;9:102041.

    Article  Google Scholar 

  5. Pantuck AJ, An J, Liu H, Rettig MB. NF-kappaB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel–Lindau inactivation in renal cell carcinomas. Cancer Res. 2010;70:752–61.

    Article  CAS  PubMed  Google Scholar 

  6. Mahalingaiah PK, Ponnusamy L, Singh KP. Chronic oxidative stress leads to malignant transformation along with acquisition of stem cell characteristics, and epithelial to mesenchymal transition in human renal epithelial cells. J Cell Physiol. 2014;230:1916–28.

    Article  Google Scholar 

  7. Huang J, Yao X, Zhang J, Dong B, Chen Q, Xue W, et al. Hypoxia-induced downregulation of miR-30c promotes epithelial–mesenchymal transition in human renal cell carcinoma. Cancer Sci. 2013;104:1609–17.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshida N, Ikemoto S, Narita K, Sugimura K, Wada S, Yasumoto R, et al. Interleukin-6, tumour necrosis factor alpha and interleukin-1beta in patients with renal cell carcinoma. Br J Cancer. 2002;86:1396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harrison ML, Obermueller E, Maisey NR, Hoare S, Edmonds K, Li NF, et al. Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol. 2007;25:4542–9.

    Article  CAS  PubMed  Google Scholar 

  10. Ho MY, Tang SJ, Chuang MJ, Cha TL, Li JY, Sun GH, et al. TNF-α induces epithelial–mesenchymal transition of renal cell carcinoma cells via a GSK3β-dependent mechanism. Mol Cancer Res. 2012;10:1109–19.

    Article  CAS  PubMed  Google Scholar 

  11. Khawam K, Giron-Michel J, Gu Y, Perier A, Giuliani M, Caignard A, et al. Human renal cancer cells express a novel membrane-bound interleukin-15 that induces, in response to the soluble interleukin-15 receptor alpha chain, epithelial-to-mesenchymal transition. Cancer Res. 2009;69:1561–9.

    Article  CAS  PubMed  Google Scholar 

  12. Yoshino H, Enokida H, Itesako T, Tatarano S, Kinoshita T, Fuse M, et al. Epithelial–mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. J Hum Genet. 2013;58:508–16.

    Article  CAS  PubMed  Google Scholar 

  13. Ni D, Ma X, Li HZ, Gao Y, Li XT, Zhang Y, et al. Downregulation of FOXO3a promotes tumor metastasis and is associated with metastasis-free survival of patients with clear cell renal cell carcinoma. Clin Cancer Res. 2014;20:1779–90.

    Article  CAS  PubMed  Google Scholar 

  14. Gnemmi V, Bouillez A, Gaudelot K, Hémon B, Ringot B, Pottier N, et al. MUC1 drives epithelial–mesenchymal transition in renal carcinoma through Wnt/β-catenin pathway and interaction with SNAIL promoter. Cancer Lett. 2014;346:225–36.

    Article  CAS  PubMed  Google Scholar 

  15. Mikami S, Katsube K, Oya M, Ishida M, Kosaka T, Mizuno R, et al. Expression of Snail and Slug in renal cell carcinoma: E-cadherin repressor Snail is associated with cancer invasion and prognosis. Lab Invest. 2011;91:1443–58.

    Article  CAS  PubMed  Google Scholar 

  16. Conant JL, Peng Z, Evans MF, Naud S, Cooper K. Sarcomatoid renal cell carcinoma is an example of epithelial–mesenchymal transition. J Clin Pathol. 2011;64:1088–92.

    Article  PubMed  Google Scholar 

  17. Boström AK, Möller C, Nilsson E, Elfving P, Axelson H, Johansson ME. Sarcomatoid conversion of clear cell renal cell carcinoma in relation to epithelial-to-mesenchymal transition. Hum Pathol. 2012;43:708–19.

    Article  PubMed  Google Scholar 

  18. Dumanskiy YV, Kudriashov AG, Vasilenko IV, Kondratyuk RB, Gulkov YK, Cyrillichystiakov RS. Markers of epithelial–mesenchymal transition in renal cell carcinoma. Exp Oncol. 2013;35:325–7.

    CAS  PubMed  Google Scholar 

  19. Harada K, Miyake H, Kusuda Y, Fujisawa M. Expression of epithelial–mesenchymal transition markers in renal cell carcinoma: impact on prognostic outcomes in patients undergoing radical nephrectomy. BJU Int. 2012;110:E1131–7.

    Article  CAS  PubMed  Google Scholar 

  20. Chen D, Gassenmaier M, Maruschke M, Riesenberg R, Pohla H, Stief CG, et al. Expression and prognostic significance of a comprehensive epithelial–mesenchymal transition gene set in renal cell carcinoma. J Urol. 2014;191:479–86.

    Article  CAS  PubMed  Google Scholar 

  21. Fang Y, Wei J, Cao J, Zhao H, Liao B, Qiu S, et al. Protein expression of ZEB2 in renal cell carcinoma and its prognostic significance in patient survival. PLoS One. 2013;8:e62558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iacovelli R, Alesini D, Palazzo A, Trenta P, Santoni M, De Marchis L, et al. Targeted therapies and complete responses in first line treatment of metastatic renal cell carcinoma. A meta-analysis of published trials. Cancer Treat Rev. 2014;40:271–5.

    Article  CAS  PubMed  Google Scholar 

  23. Santoni M, Massari F, Amantini C, Nabissi M, Maines F, Burattini L, et al. Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother. 2013;62:1757–68.

    Article  CAS  PubMed  Google Scholar 

  24. Bielecka ZF, Czarnecka AM, Solarek W, Kornakiewicz A, Szczylik C. Mechanisms of acquired resistance to tyrosine kinase inhibitors in clear—cell renal cell carcinoma (ccRCC). Curr Signal Transduct Ther. 2014;8:218–28.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hammers HJ, Verheul HM, Salumbides B, Sharma R, Rudek M, Jaspers J, et al. Reversible epithelial to mesenchymal transition and acquired resistance to sunitinib in patients with renal cell carcinoma: evidence from a xenograft study. Mol Cancer Ther. 2010;9:1525–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci. 2011;68:3033–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aubert S, Fauquette V, Hémon B, Lepoivre R, Briez N, Bernard D, et al. MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Res. 2009;69:5707–15.

    Article  CAS  PubMed  Google Scholar 

  28. Kondo K, Kohno N, Yokoyama A, Hiwada K. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res. 1998;58:2014–9.

    CAS  PubMed  Google Scholar 

  29. Yuan Z, Wong S, Borrelli A, Chung MA. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation. Biochem Biophys Res Commun. 2007;362:740–6.

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Caffrey TC, Steele MM, Mohr A, Singh PK, Radhakrishnan P. MUC1 regulates cyclin D1 gene expression through p120 catenin and β-catenin. Oncogenesis. 2014;3:e107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rokavec M, Li H, Jiang L, Hermeking H. The p53/miR-34 axis in development and disease. J Mol Cell Biol. 2014;6:214–30.

    Article  CAS  PubMed  Google Scholar 

  32. Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem. 1999;274:20489–98.

    Article  CAS  PubMed  Google Scholar 

  33. Postigo AA, Depp JL, Taylor JJ, Kroll KL. Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO J. 2003;22:2453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng H, Shen M, Zha YL, Li W, Wei Y, Blanco MA, et al. PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial–mesenchymal transition and metastasis. Cancer Cell. 2014;26:358–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hannigan G, Troussard AA, Dedhar S. Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nat Rev Cancer. 2005;5:51–63.

    Article  CAS  PubMed  Google Scholar 

  36. Han KS, Li N, Raven PA, Fazli L, Ettinger S, Hong SJ, et al. Targeting integrin-linked kinase suppresses invasion and metastasis through downregulation of epithelial to mesenchymal transition in renal cell carcinoma. Mol Cancer Ther. 2015;14:1024–34.

    Article  CAS  PubMed  Google Scholar 

  37. Mikami S, Oya M, Mizuno R, Kosaka T, Katsube K, Okada Y. Invasion and metastasis of renal cell carcinoma. Med Mol Morphol. 2014;47:63–7.

    Article  CAS  PubMed  Google Scholar 

  38. Weimer JM, Anton ES. Doubling up on microtubule stabilizers: synergistic functions of doublecortin-like kinase and doublecortin in the developing cerebral cortex. Neuron. 2006;49:3–4.

    Article  CAS  PubMed  Google Scholar 

  39. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499:43–9.

    Article  Google Scholar 

  40. Cao J, Liu J, Xu R, Zhu X, Liu L, Zhao X. MicroRNA-21 stimulates epithelial-to-mesenchymal transition and tumorigenesis in clear cell renal cells. Mol Med Rep. 2016;13:75–82.

    PubMed  PubMed Central  Google Scholar 

  41. Lu R, Ji Z, Li X, Zhai Q, Zhao C, Jiang Z, et al. miR-145 functions as tumor suppressor and targets two oncogenes, ANGPT2 and NEDD9, in renal cell carcinoma. J Cancer Res Clin Oncol. 2014;140:387–97.

    Article  CAS  PubMed  Google Scholar 

  42. Jingushi K, Ueda Y, Kitae K, Hase H, Egawa H, Ohshio I, et al. miRNA-629 targets TRIM33 to promote TGF-beta/Smad signaling and metastatic phenotypes in ccRCC. Mol Cancer Res. 2014;13:565–74.

    Article  PubMed  Google Scholar 

  43. Zhang S, Zhang D, Yi C, Wang Y, Wang H, Wang J. MicroRNA-22 functions as a tumor suppressor by targeting SIRT1 in renal cell carcinoma. Oncol Rep. 2016;35:559–67.

    PubMed  Google Scholar 

  44. Liu Y, Zhang M, Qian J, Bao M, Meng X, Zhang S, et al. miR-134 functions as a tumor suppressor in cell proliferation and epithelial-to-mesenchymal transition by targeting KRAS in renal cell carcinoma cells. DNA Cell Biol. 2015;34:429–36.

    Article  CAS  PubMed  Google Scholar 

  45. Li W, Wang Q, Su Q, Ma D, An C, Ma L, et al. Honokiol suppresses renal cancer cells’ metastasis via dual-blocking epithelial–mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signaling. Mol Cells. 2014;37:383–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, et al. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol. 2013;190:1059–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Piva.

Ethics declarations

Conflict of interest

FP, MG, MS, GO, MS, ALB, LC, GP, RM declare that they have no conflict of interest.

Funding

All authors have no funding to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piva, F., Giulietti, M., Santoni, M. et al. Epithelial to Mesenchymal Transition in Renal Cell Carcinoma: Implications for Cancer Therapy. Mol Diagn Ther 20, 111–117 (2016). https://doi.org/10.1007/s40291-016-0192-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0192-5

Keywords

Navigation