Skip to main content
Log in

The Role of Altered Cell–Cell Communication in Melanoma Progression

  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Under normal homeostasis, melanocyte growth and behaviour is tightly controlled by the surrounding keratinocytes. Keratinocytes regulate melanocyte behaviour through a complex system of paracrine growth factors and cell–cell adhesion molecules. Pathological changes, leading to development of malignant melanoma, upset this delicate homeostatic balance and can lead to altered expression of cell–cell adhesion and cell–cell communication molecules. In particular, there is a switch from the E-cadherin-mediated keratinocyte–melanocyte partnership to the N-cadherin-mediated melanoma–melanoma and melanoma–fibroblast interaction. Other changes include the alteration in the gap junctions formed between the melanocyte and keratinocyte. Changes in the connexin expression, in particular the loss of connexin 43, may result in a reduction or a loss of gap junctional activity, which is thought to contribute towards tumour progression. In the current review we describe the alterations in cell–cell adhesion and communication associated with melanoma development and progression, and discuss how a greater understanding of these processes may aid the future therapy of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev 1: 46–54.

    Google Scholar 

  • Brandner JM, Kief S, Grund C, Rendl M, Houdek P, Kuhn C, Tschachler E, Franke WW, Moll I (2002) Organization and formation of the tight junction-system in human epidermis and cultured keratinocytes. Eur J Cell Biol 81: 253–263.

    Google Scholar 

  • Brandner JM, McIntyre M, Kief S, Wladykowski E, Moll I (2003) Expression and localization of tight junction-associated proteins in human hair follicles. Arch Dermatol Res 295: 211–221.

    Google Scholar 

  • Brissette JL, Kumar NM, Gilula NB, Hall JE, Dotto GP (1994) Switch in gap junction protein expression is associated with selective changes in junctional permeability during keratinocyte differentiation. Proc Natl Acad Sci USA 91: 6453–6457.

    Google Scholar 

  • Burrows FJ, Gore M, Smiley WR, Kanemitsu MY, Jolly DJ, Read SB, Nicholas T, Kruse CA (2002) Purified herpes simplex virus thymidine kinase retroviral particles: III. Characterization of bystander killing mechanisms in transfected tumor cells. Cancer Gene Ther 9: 87–95.

    Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Google Scholar 

  • Carystinos GD, Bier A, Batist G (2001) The role of connexin-mediated cell–cell communication in breast cancer metastasis. J Mammary Gland Biol Neoplasia 6: 431–440.

    Google Scholar 

  • Chidgey M (2002) Desmosomes and disease: An update. Histol Histopathol 17: 1179–1192.

    Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417: 949–954.

    Google Scholar 

  • Dejana E (1996) Endothelial adherens junctions: Implications in the control of vascular permeability and angiogenesis. J Clin Invest 100(Suppl. 11): S7–S10.

    Google Scholar 

  • DeLuca SM, Gerhart J, Cochran E, Simak E, Blitz J, Mattiacci-Paessler M, Knudsen K, George-Weinstein M (1999) Hepatocyte growth factor/ scatter factor promotes a switch from E to N-cadherin in chick embryo epiblast cells. Exp Cell Res 251: 3–15.

    Google Scholar 

  • Di WL, Rugg EL, Leigh IM, Kelsell DP (2001) Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol 117: 958–964.

    Google Scholar 

  • Donatien P, Surleve-Bazeille JE, Thody AJ, Taieb A (1993) Growth and differentiation of normal human melanocytes in a TPA-free, cholera toxin-free, low-serum medium and influence of keratinocytes. Arch Dermatol Res 285: 385–392.

    Google Scholar 

  • Duflot-Dancer A, Mesnil M, Yamasaki H (1997) Dominant-negative abrogation of connexin-mediated cell growth control by mutant connexin genes. Oncogene 15: 2151–2158.

    Google Scholar 

  • Eghbali B, Kessler JA, Reid LM, Roy C, Spray DC (1991) Involvement of gap junctions in tumorigenesis: Transfection of tumor cells with connexin 32 cDNA retards growth in vivo. Proc Natl Acad Sci USA 88: 10701–10705.

    Google Scholar 

  • Elfgang C, Echert R, Lichtenbert-Frate H, Butterweck A, Traub O, Klein RA, Hülser DF, Willecke K (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129: 805–817.

    Google Scholar 

  • Elias PM, Friend DS (1975) The permeability barrier in mammalian epidermis. J Cell Biol 65: 180–191.

    Google Scholar 

  • Elias PM, McNutt NS, Friend DS (1977) Membrane alterations during cornification of mammalian squamous epithelia: A freeze-fracture, tracer, and thin-section study. Anat Rec 189: 577–594.

    Google Scholar 

  • Evans WH, Martin PE (2002) Gap junctions: Structure and function. Mol Membr Biol 19: 121–136.

    Google Scholar 

  • Franke WW, Goldschmidt MD, Zimbelmann R, Mueller HM, Schiller DL, Cowin P (1989) Molecular cloning and amino acid sequence of human plakoglobin, the common junctional plaque protein. Proc Natl Acad Sci USA 86: 4027–4031

    Google Scholar 

  • Fukata M, Kuroda S, Nakagawa M, Kawajiri A, Itoh N, Shoji I, Matsuura Y, Yonehara S, Fujisawa H, Kikuchi A, Kaibuchi K (1999a) Cdc42 and Rac1 regulate the interaction of IQGAP1 with beta-catenin. J Biol Chem 274: 26044–26050.

    Google Scholar 

  • Fukata M, Nakagawa M, Kuroda S, Kaibuchi K (1999b) Cell adhesion and Rho small GTPases. J Cell Sci 112: 4491–4500.

    Google Scholar 

  • Funayama N, Fagotto F, McCrea P, Gumbiner BM (1995) Embryonic axis induction by the armadillo repeat domain of β-catenin: Evidence for intracellular signaling. J Cell Biol 128: 959–968.

    Google Scholar 

  • Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice. J Cell Biol 156: 1099–1111.

    Google Scholar 

  • Goliger JA, Paul DL (1995) Wounding alters epidermal connexin expression and gap junction-mediated intercellular communication. Mol Biol Cell 6: 1491–1501.

    Google Scholar 

  • Guilford P (1999) E-cadherin downregulation in cancer: Fuel on the fire? Mol Med Today 5: 172–177.

    Google Scholar 

  • Haass NK, Houdek P, Brandner JM, Moll I (2003a) Expression patterns of connexins in Merkel cell carcinoma and adjacent epidermis. In: Baumann KI, Moll I, Halata Z, eds. The Merkel Cell – Structure – Development – Function – and Cancerogenesis. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, pp. 219–222.

    Google Scholar 

  • Haass NK, Houdek P, Wladykowski E, Moll I, Brandner JM (2003b) Expression patterns of tight junction proteins in Merkel cell carcinoma. In: Baumann KI, Moll I, Halata Z, eds. The Merkel Cell – Structure – Development – Function – and Cancerogenesis. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, pp. 223–226.

    Google Scholar 

  • Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R (1995) Lack of β-catenin affects mouse development at gastrulation. Development 121: 3529–3537.

    Google Scholar 

  • Hajra KM, Fearon ER (2002) Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34: 255–268.

    Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70.

    Google Scholar 

  • Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc Natl Acad Sci USA 98: 8018–8023.

    Google Scholar 

  • Hendrix MJ, Seftor EA, Hess AR, Seftor RE (2003) Molecular plasticity of human melanoma cells. Oncogene 22: 3070–3075.

    Google Scholar 

  • Hess AR, Seftor EA, Gardner LM, Carles-Kinch K, Schneider GB, Seftor RE, Kinch MS, Hendrix MJ (2001) Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: Role of epithelial cell kinase (Eck/EphA2). Cancer Res 61: 3250–3255.

    Google Scholar 

  • Hirai Y, Nose A, Kobayashi S, Takeichi M (1989a) Expression and role of E-and P-cadherin adhesion molecules in embryonic histogenesis. I. Lung epithelial morphogenesis. Development 105: 263–270

    Google Scholar 

  • Hirai Y, Nose A, Kobayashi S, Takeichi M (1989b) Expression and role of E-and P-cadherin adhesion molecules in embryonic histogenesis. II. Skin morphogenesis. Development 105: 271–277.

    Google Scholar 

  • Hirano S, Nose A, Hatta K, Kawakami A, Takeichi M (1987) Calcium-dependent cell–cell adhesion molecules (cadherins): Subclass speci-ficities and possible involvement of actin bundles. J Cell Biol 105: 2501–2510.

    Google Scholar 

  • Hirohashi S (1998) Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol 153: 333–339.

    Google Scholar 

  • Hirschi KK, Xu CE, Tsukamoto T, Sager R (1996) Gap junction genes Cx26 and Cx43 individually suppress the cancer phenotype of human mammary carcinoma cells and restore differentiation potential. Cell Growth Diff 7: 861–870.

    Google Scholar 

  • Hoschuetzky H, Aberle H, Kemler R (1994) Beta-catenin mediates the interaction of the cadherin–catenin complex with epidermal growth factor receptor. J Cell Biol 127: 1375–1380.

    Google Scholar 

  • Hough CD, Cho KR, Zonderman AB, Schwartz DR, Morin PJ (2001) Coordinately up-regulated genes in ovarian cancer. Cancer Res 61: 3869–3876.

    Google Scholar 

  • Hsu MY, Wheelock MJ, Johnson KR, Herlyn M (1996) Shifts in cadherin profiles between human normal melanocytes and melanomas. J Investig Dermatol Symp Proc 1: 188–194.

    Google Scholar 

  • Hsu MY, Andl T, Li G, Meinkoth JL, Herlyn M (2000a) Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression J Cell Sci 113: 1535–1542.

    Google Scholar 

  • Hsu MY, Meier FE, Nesbit M, Hsu JY, Van Belle P, Elder DE, Herlyn M (2000b) E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am J Pathol 156: 1515–1525.

    Google Scholar 

  • Huang RP, Fan Y, Hossain MZ, Peng A, Zeng ZL, Boynton AL (1998) Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx 43). Cancer Res 58: 5089–5096.

    Google Scholar 

  • Huang RP, Hossain MZ, Sehgal A, Boynton AL (1999) Reduced connexin43 expression in high-grade human brain glioma cells. J Surg Oncol 70: 21–24.

    Google Scholar 

  • Hülsken J, Birchmeier W, Behrens J (1994) E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. J Cell Biol 127: 2061–2069.

    Google Scholar 

  • Ito A, Katoh F, Kataoka TR, Okada M, Tsubota N, Asada H, Yoshikawa K, Maeda S, Kitamura Y, Yamasaki H, Nojima H (2000) A role for heterologous gap junctions between melanoma and endothelial cells in metastasis. J Clin Invest 105: 1189–1197.

    Google Scholar 

  • Jamal S, Schneider RJ (2002) UV-induction of keratinocyte endothelin-1 downregulates E cadherin in melanocytes and melanoma cells. J Clin Invest 110: 443–452.

    Google Scholar 

  • Jiang JX, Goodenough DA (1996) Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci USA 93: 1287–1291.

    Google Scholar 

  • Jinn Y, Ichioka M, Marumo F (1998) Expression of connexin32 and connexin43 gap junction proteins and E-cadherin in human lung cancer. Cancer Lett 127: 161–169.

    Google Scholar 

  • Kaibuchi K, Kuroda S, Fukata M, Nakagawa M (1999) Regulation of cadherin-mediated cell–cell adhesion by the Rho family GTPases. Curr Opin Cell Biol 11: 591–596.

    Google Scholar 

  • Kerjaschki D, Krisch K, Sleyter UB, Umrath W, Jakesz R, Depisch D, Kokoschka R, Horandner H (1979) The structure of tight junctions in human thyroid tumors. A systematic freeze-fracture study. Am J Pathol 96: 207–225.

    Google Scholar 

  • Kimura Y, Shiozaki H, Hirao M, Maeno Y, Doki Y, Inoue M, Monden T, Ando-Akatsuka Y, Furuse M, Tsukita S, Monden M(1997) Expression of occludin, tight-junction-associated protein, in human digestive tract. Am J Pathol 151: 45–54.

    Google Scholar 

  • King TJ, Fukushima LH, Hieber AD, Shimabukuro KA, Sakr WA, Bertram JS (2000) Reduced levels of connexin43 in cervical dysplasia: Inducible expression in a cervical carcinoma cell line decreases neoplastic potential with implications for tumor progression. Carcinogenesis 21: 1097–1109.

    Google Scholar 

  • Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E, Rein A, Sauter G, Kallioniemi OP, Sukumar S (2003) Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22: 2021–2033.

    Google Scholar 

  • Kramer F, White K, Kubbies M, Swisshelm K, Weber BH (2000) Genomic organization of claudin-1 and its assessment in hereditary and sporadic breast cancer. Hum Genet 107: 249–256.

    Google Scholar 

  • Krutovskikh V, Mazzoleni G, Mironov N, Omori Y, Aguelon AM, Mesnil M, Berger F, Partensky C, Yamasaki H (1994) Altered homologous and heterologous gap-junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin 32. Int J Cancer 56: 87–94.

    Google Scholar 

  • Krutovskikh VA, Yamasaki H, Tsuda H, Asamoto M(1998) Inhibition of intrinsic gap-junction intercellular communication and enhancement of tumorigenicity of the rat bladder carcinoma cell line BC31 by a dominant-negative connexin 43 mutant. Mol Carcinogen 23: 254–261.

    Google Scholar 

  • Krutovskikh VA, Troyanovsky SM, Piccoli C, Tsuda H, Asamoto M, Yamasaki H (2000) Differential effect of subcellular localization of communication impairing gap junction protein connexin43 on tumor cell growth in vivo. Oncogene 19: 505–513.

    Google Scholar 

  • Krutovskikh VA, Piccoli C, Yamasaki H, Yamasaki H (2002) Gap junction intercellular communication propagates cell death in cancerous cells. Oncogene 21: 1989–1999.

    Google Scholar 

  • Langbein L, Grund C, Kuhn C, Praetzel S, Kartenbeck J, Brandner JM, Moll I, Franke WW(2002) Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived there from. Eur J Cell Biol 81: 419–435.

    Google Scholar 

  • Li D, Mrsny RJ (2000) Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J Cell Biol 148: 791–800.

    Google Scholar 

  • Li G, Satyamoorthy K, Herlyn M (2001a) N-cadherin-mediated inter-cellular interactions promote survival and migration of melanoma cells. Cancer Res 61: 3819–3825.

    Google Scholar 

  • Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K, Herlyn M (2001b) Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 20: 8125–8135.

    Google Scholar 

  • Li G, Satayamoorthy K, Herlyn M (2002) Dynamics of cell interactions during melanoma development. Crit Rev Oral Biol Med 13: 62–70.

    Google Scholar 

  • Li G, Satayamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn M (2003) Function and regulation of melanoma–stromal fibroblast inter-actions: When seed meets soil. Oncogene 22: 3162–3171.

    Google Scholar 

  • Loewenstein WR (1981) Junctional intercellular communication: The cell-to-cell membrane channel. Physiol Rev 61: 829–913.

    Google Scholar 

  • Long H, Crean CD, Lee WH, Cummings OW, Gabig TG (2001) Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res 61: 7878–7881.

    Google Scholar 

  • Martin TA, Jiang WG (2001) Tight junctions and their role in cancer metastasis. Histol Histopathol 16: 1183–1195.

    Google Scholar 

  • Meyer CG, Amedofu GK, Brandner JM, Pohland D, Timmann C, Horstmann RD (2002) Selection for deafness? Nat Med 8: 1332–1333.

    Google Scholar 

  • McGary EC, Lev DC, Bar-Eli M (2002) Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther 1: 459–465.

    Google Scholar 

  • Mitic LL, Anderson JM (1998) Molecular architecture of tight junctions. Annu Rev Physiol 60: 121–142.

    Google Scholar 

  • Miwa N, Furuse M, Tsukita S, Niikawa N, Nakamura Y, Furukawa Y (2001) Involvement of claudin-1 in the β-catenin/Tcf signaling path-way and its frequent upregulation in human colorectal cancers. Oncol Res 12: 469–476.

    Google Scholar 

  • Moennikes O, Buchmann A, Willecke K, Traub O, Schwarz M (2000) Hepatocarcinogenesis in female mice with mosaic expression of connexin32. Hepatology 32: 501–506.

    Google Scholar 

  • Mullin JM (1997) Potential interplay between luminal growth factors and increased tight junction permeability in epithelial carcinogenesis. J Exp Zool 279: 484–489.

    Google Scholar 

  • Nacht M, Ferguson AT, Zhang W, Petroziello JM, Cook BP, Gao YH, Maguire S, Riley D, Coppola G, Landes GM, Madden SL, Sukumar S (1999) Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 59: 5464–5470.

    Google Scholar 

  • Naus CC (2002) Gap junctions and tumour progression. Can J Physiol Pharmacol 80: 136–141.

    Google Scholar 

  • Nishimura EK, Yoshida H, Kunisada T, Nishikawa SI (1999) Regulation of E-and P-cadherin expression correlated with melanocyte migration and diversification. Dev Biol 215: 155–166.

    Google Scholar 

  • Omori Y, Yamasaki H (1998) Mutated connexin 43 proteins inhibit rat glioma cell growth suppression mediated by wild-type connexin 43 in a dominant-negative manner. Int J Cancer 78: 446–453.

    Google Scholar 

  • Park CC, Bissell MJ, Barcellos-Hoff MH (2000) The influence of the microenvironment on the malignant phenotype. Mol Med Today 6: 324–329.

    Google Scholar 

  • Pitts JD, Finbow ME, Kam E (1988) Junctional communication and cellular differentiation. Br J Cancer 9(Suppl.): 52–57.

    Google Scholar 

  • Poser I, Dominguez D, de Herreros AG, Varnai A, Buettner R, Bosserhoff AK (2001) Loss of E-cadherin expression in melanoma cells involves up-regulation of the transcriptional repressor Snail. J Biol Chem 276: 24661–24666.

    Google Scholar 

  • Pummi K, Malminen M, Aho H, Karvonen SL, Peltonen J, Peltonen S (2001) Epidermal tight junctions: ZO-1 and occludin are expressed in mature, developing, and affected skin and in vitro differentiating keratinocytes. J Invest Dermatol 117: 1050–1058.

    Google Scholar 

  • Rangel LB, Agarwal R, D'souza T, Pizer ES, Alo PL, Lancaster WD, Gregoire L, Schwartz DR, Cho KR, Morin PJ (2003) Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res 9: 2567–2675.

    Google Scholar 

  • Ren J, Hamada J, Takeichi N, Fujikawa S, Kobayashi H(1990) Ultrastructural differences in junctional intercellular communication between highly and weakly metastatic clones derived from rat mammary carcinoma. Cancer Res 50: 358–362.

    Google Scholar 

  • Reynolds AB, Herbert L, Cleveland JL, Berg ST, Gaut JR (1992) p120, a novel substrate of protein tyrosine kinase receptors and of p60v-src, is related to cadherin-binding factors β-catenin, plakoglobin and armadillo. Oncogene 7: 2439–2445.

    Google Scholar 

  • Richard G (2000) Connexins: A connection with the skin. Exp Dermatol 9: 77–96.

    Google Scholar 

  • Salomon D, Masgrau E, Vischer S, Chanson M, Saurat JH, Spray DS, Meda P (1993) Gap junction proteins and communication in human epidermis. Prog Cell Res 3: 255–231.

    Google Scholar 

  • Sanders DS, Blessing K, Hassan GA, Bruton R, Marsden JR, Jankowski J (1999) Alterations in cadherin and catenin expression during the biological progression of melanocytic tumours. Mol Pathol 52: 151–157.

    Google Scholar 

  • Satyamoorthy K, Muyrers J, Meier F, Patel D, Herlyn M (2001) Mel-CAM-specific genetic suppressor elements inhibit melanoma growth through loss of gap junctional communication. Oncogene 20: 4676–4684.

    Google Scholar 

  • Saunders MM, Seraj MJ, Li Z, Zhou Z, Winter CR, Welch DR, Donahue HJ (2001) Breast cancer metastatic potential correlates with a breakdown in homospecific and heterospecific gap junctional intercellular communication. Cancer Res 61: 1765–1767.

    Google Scholar 

  • Schmidt A, Heid HW, Schafer S, Nuber UA, Zimbelmann R, Franke WW (1994) Desmosomes and cytoskeletal architecture in epithelial differentiation: Cell type-specific plaque components and intermediate filament anchorage. Eur J Cell Biol 65: 229–245.

    Google Scholar 

  • Seftor RE, Seftor EA, Koshikawa N, Meltzer PS, Gardner LM, Bilban M, Stetler-Stevenson WG, Quaranta V, Hendrix MJ (2001) Cooperative interactions of laminin 5 gamma2 chain, matrix metalloproteinase-2, and membrane type-1-matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res 61: 6322–6327.

    Google Scholar 

  • Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, Shapiro SS (2000) The protease-activated receptor 2 regulates pigmentation via keratinocyte–melanocyte interactions. Exp Cell Res 254: 25–32.

    Google Scholar 

  • Seline PC, Norris DA, Horikawa T, Fujita M, Middleton MH, Morelli JG (1996) Expression of E and P-cadherin by melanoma cells decreases in progressive melanomas and following ultraviolet radiation. J Invest Dermatol 106: 1320–1324.

    Google Scholar 

  • Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grubel G, Legrand JF, Als-Nielsen J, Colman DR, Hendrickson WA (1995) Structural basis of cell–cell adhesion by cadherins. Nature 374: 327–337.

    Google Scholar 

  • Sharpe C, Lawrence N, Martinez Arias A (2001) Wnt signalling: Atheme with nuclear variations. Bioessays 23: 311–318.

    Google Scholar 

  • Shih IM, Elder DE, Hsu MY, Herlyn M (1994) Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. AmJ Pathol 145: 837–845.

    Google Scholar 

  • Silye R, Karayiannakis AJ, Syrigos KN, Poole S, van Noorden S, Batchelor W, Regele H, Sega W, Boesmueller H, Krausz T, Pignatelli M(1998) E-cadherin/catenin complex in benign and malignant melanocytic lesions. J Pathol 186: 350–355.

    Google Scholar 

  • Smalley KSM (2003) A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer 104: 527–532.

    Google Scholar 

  • Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM (1999) Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis 20: 1425–1431.

    Google Scholar 

  • Soler C, Rousselle P, Damour O (1998) Cadherin mediated cell–cell adhesion is regulated by tyrosine phosphatases in human keratinocytes. Cell Adhes Commun 5: 13.

    Google Scholar 

  • Spray DC (1994) Physiological and pharmacological regulation of gap junction channels. In: Citi S, ed. Molecular Mechanisms of Epithelial Cell Junctions: From Development to Disease. Austin, Texas: R.G. Landes Company, pp. 195–215.

    Google Scholar 

  • Stauffer KA(1995) The gap junction proteins β1-connexin (connexin-32) and β2-connexin (connexin-26) can form heteromeric hemichannels. J Biol Chem 270: 6768–6772.

    Google Scholar 

  • Stevenson BR, Keon BH (1998) The tight junction: Morphology to molecules. Annu Rev Cell Dev Biol 14: 89–109.

    Google Scholar 

  • Su YA, Bittner ML, Chen Y, Tao L, Jiang Y, Zhang Y, Stephan DA, Trent JM (2000) Identification of tumor-suppressor genes using human melanoma cell lines UACC903, UACC903(+6), and SRS3 by comparison of expression profiles. Mol Carcinog 28: 119–127.

    Google Scholar 

  • Suzuki ST (1996a) Structural and functional diversity of cadherin super-family: Are new members of cadherin superfamily involved in signal transduction pathway? J Cell Biochem 61: 531–542.

    Google Scholar 

  • Suzuki ST (1996b) Protocadherins and diversity of the cadherin super-family. J Cell Sci 109: 2609–2611.

    Google Scholar 

  • Tada J, Hashimoto K(1997) Ultrastructural localization of gap junctional protein connexin 43 in normal human skin, basal cell carcinoma and squamous cell carcinoma. J Cut Pathol 24: 628–635.

    Google Scholar 

  • Takeichi M(1988) The cadherins: Cell–cell adhesion molecules controlling animal morphogenesis. Development 102: 639–655.

    Google Scholar 

  • Tang A, Eller MS, Hara M, Yaar M, Hirohashi S, Gilchrest BA (1994) E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J Cell Sci 107: 983–992.

    Google Scholar 

  • Temme A, Buchmann A, Gabriel HD, Nelles E, Schwarz M, Willecke K (1997) High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin32. Curr Biol 7: 713–716.

    Google Scholar 

  • Tsai H, Werber J, Davia MO, Edelman M, Tanaka KE, Melman A, Christ GJ, Geliebter J (1996) Reduced connexin 43 expression in high grade, human prostatic adenocarcinoma cells. Biochem Biophys Res Commun 227: 64–69.

    Google Scholar 

  • Tselepis C, Chidgey M, North A, Garrod D(1998) Desmosomal adhesion inhibits invasive behavior. Proc Natl Acad Sci USA 95: 8064–8069.

    Google Scholar 

  • Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285–293.

    Google Scholar 

  • Uchida Y, Matsuda K, Sasahara K, Kawabata H, Nishioka M (1995) Immunohistochemistry of gap junctions in normal and diseased gastric mucosa of humans. Gastroenterology 109: 1492–1496.

    Google Scholar 

  • Veenstra RD (1996) Size and selectivity of gap junction channels formed from different connexins. J Bioenerg Biomembr 28: 326–337.

    Google Scholar 

  • Weinstein RS, Merk FB, Alroy J (1976) The structure and function of intercellular junctions in cancer. Adv Cancer Res 23: 23–89.

    Google Scholar 

  • Whittock NV, Bower C (2003) Genetic evidence for a novel human desmosomal cadherin, desmoglein 4. J Invest Dermatol 120: 523–530.

    Google Scholar 

  • Wilgenbus KK, Kirkpatrick CJ, Knuechel R, Willecke K, Traub O(1992) Expression of Cx26, Cx32 and Cx43 gap junction proteins in normal and neoplastic human tissues. Int J Cancer 51: 522–529.

    Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383: 725–737.

    Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood–brain barrier is selectively lost during experimental auto-immune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105: 586–592.

    Google Scholar 

  • Yamaoka K, Nouchi T, Tazawa J, Hiranuma S, Marumo F, Sato C (1995) Expression of gap junction protein connexin 32 and E-cadherin in human hepatocellular carcinoma. J Hepatol 22: 536–539

    Google Scholar 

  • Yamasaki H, Krutovskikh V, Mesnil M, Tanaka T, Zaidan-Dagli ML, Omori Y (1999) Role of connexin (gap junction) genes in cell growth control and carcinogenesis. CR Acad Sci III 322: 151–159.

    Google Scholar 

  • Yap AS, Brieher WM, Gumbiner BM (1997) Molecular and functional analysis of cadherin-based adherens junctions. Ann Rev Cell Dev Biol 13: 119–146.

    Google Scholar 

  • Zhang ZQ, Zhang W, Wang NQ, Bani-Yaghoub M, Lin ZX, Naus CC (1998) Suppression of tumorigenicity of human lung carcinoma cells after transfection with connexin43. Carcinogenesis 19: 1889–1894.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haass, N.K., Smalley, K.S. & Herlyn, M. The Role of Altered Cell–Cell Communication in Melanoma Progression. Histochem J 35, 309–318 (2004). https://doi.org/10.1023/B:HIJO.0000032362.35354.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HIJO.0000032362.35354.bb

Keywords

Navigation