Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Separable effector T cell populations specialized for B cell help or tissue inflammation

Abstract

We identified specialized B helper and tissue inflammatory CD4+ T cell subsets that developed concurrently from common naïve precursors during the primary immune response. These separable populations were distinguishable by their expression of adhesion and chemoattractant receptors that directed their homing to the appropriate effector sites in vivo and also showed intrinsic differences in their ability to support B cell antibody production and produce effector cytokines in vitro. Thus, our data show a previously unappreciated functional specialization among CD4+ effector T cells, further defining their diversity and role in adaptive immunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunization with OVA + CT results in effector cells that mediate DTH and B cell help.
Figure 2: Effector subsets defined by expression of adhesion molecules and chemokine receptors.
Figure 3: The P-lighi and P-ligL-selectin subsets of CD4+ effector cells differentially mediate DTH and B cell help in vivo.
Figure 4: In vitro B cell help and effector cytokine production by P-lighi and P-ligL-selectin effector cells.
Figure 5: Uniform expression of ICOS and CD40L by OVA-specific effector cells after OVA + CT immunization.

Similar content being viewed by others

References

  1. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 272, 60–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Warnock, R. A., Askari, S., Butcher, E. C. & von Andrian, U. H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. In vivo -activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Carr, M. W., Roth, S. J., Luther, E., Rose, S. S. & Springer, T. A. Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl Acad. Sci. USA 91, 3652–3656 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qin, S. et al. The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest. 101, 746–754 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tietz, W. et al. CD4+ T cells migrate into inflamed skin only if they express ligands for E- and P-selectin. J. Immunol. 161, 963–970 (1998).

    CAS  PubMed  Google Scholar 

  9. Kearney, E. R., Pape, K. A., Loh, D. Y. & Jenkins, M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Gallatin, W. M., Weissman, I. L. & Butcher, E. C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304, 30–34 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Austrup, F. et al. P- and E-selectin mediate recruitment of T-helper-1 but not T-helper-2 cells into inflammed tissues. Nature 385, 81–83 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Gunn, M. D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goebeler, M. et al. The C-X-C chemokine Mig is highly expressed in the papillae of psoriatic lesions. J. Pathol. 184, 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Patel, D. D., Zachariah, J. P. & Whichard, L. P. CXCR3 and CCR5 ligands in rheumatoid arthritis synovium. Clin. Immunol. 98, 39–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Narumi, S. et al. Expression of IFN-inducible protein-10 in chronic hepatitis. J. Immunol. 158, 5536–5544 (1997).

    CAS  PubMed  Google Scholar 

  16. Randolph, D. A., Huang, G., Carruthers, C. J., Bromley, L. E. & Chaplin, D. D. The role of CCR7 in TH1 and TH2 cell localization and delivery of B cell help in vivo. Science 286, 2159–2162 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Farrar, M. A. & Schreiber, R. D. The molecular cell biology of interferon-γ and its receptor. Annu. Rev. Immunol. 11, 571–611 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Finkelman, F.D. et al. Lymphokine control of in vivo immunoglobulin isotype selection. Annu. Rev. Immunol. 8, 303–333 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto, S. et al. Mutants in the ADP-ribosyltransferase cleft of cholera toxin lack diarrheagenicity but retain adjuvanticity. J. Exp. Med. 185, 1203–1210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coyle, A.J. et al. The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13, 95–105 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Grewal, I. S. & Flavell, R. A. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16, 111–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Butcher, E. C., Williams, M., Youngman, K., Rott, L. & Briskin, M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Sallusto, F. & Lanzavecchia, A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol. Rev. 177, 134–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Picker, L. J., Michie, S. A., Rott, L. S. & Butcher, E. C. A unique phenotype of skin-associated lymphocytes in humans. Preferential expression of the HECA-452 epitope by benign and malignant T cells at cutaneous sites. Am. J. Pathol. 136, 1053–1068 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rott, L. S., Briskin, M. J., Andrew, D. P., Berg, E. L. & Butcher, E. C. A fundamental subdivision of circulating lymphocytes defined by adhesion to mucosal addressin cell adhesion molecule-1. Comparison with vascular cell adhesion molecule-1 and correlation with β 7 integrins and memory differentiation. J. Immunol. 156, 3727–3736 (1996).

    CAS  PubMed  Google Scholar 

  27. Campbell, J. J. et al. The chemokine receptor CCR4 in vascular recognition by cutaneous but not intestinal memory T cells. Nature 400, 776–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Kunkel, E. J. et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J. Exp. Med. 192, 761–768 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zabel, B. A. et al. Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J. Exp. Med. 190, 1241–1256 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Morales, J. et al. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc. Natl Acad. Sci. USA 96, 14470–14475 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim, C. H. et al. Subspecialization of CXCR5(+) T cells. B helper activity is focused in a germinal center-localized subset of CXCR5(+) T cells. J. Exp. Med. 193, 1373–1382 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong, C. et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Zelenika, D. et al. Rejection of H-Y disparate skin grafts by monospecific CD4+ Th1 and Th2 cells: no requirement for CD8+ T cells or B cells. J. Immunol. 161, 1868–1874 (1998).

    CAS  PubMed  Google Scholar 

  37. Smith, K. M. et al. Th1 and Th2 CD4+ T cells provide help for B cell clonal expansion and antibody synthesis in a similar manner in vivo. J. Immunol. 165, 3136–3144 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Hansen, G., Berry, G., DeKruyff, R. H. & Umetsu, D. T. Allergen-specific Th1 cells fail to counterbalance Th2 cell-induced airway hyperreactivity but cause severe airway inflammation. J. Clin. Invest. 103, 175–183 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nanki, T. & Lipsky, P. E. Lack of correlation between chemokine receptor and T(h)1/T(h)2 cytokine expression by individual memory T cells. Int. Immunol. 12, 1659–1667 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kelly, B. L. & Locksley, R. M. Coordinate regulation of the IL-4, IL-13, and IL-5 cytokine cluster in Th2 clones revealed by allelic expression patterns. J. Immunol. 165, 2982–2986 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Kelso, A., Groves, P., Ramm, L. & Doyle, A. G. Single-cell analysis by RT-PCR reveals differential expression of multiple type 1 and 2 cytokine genes among cells within polarized CD4+ T cell populations. Int. Immunol. 11, 617–621 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Bucy, R. P. et al. Single cell analysis of cytokine gene coexpression during CD4+ T-cell phenotype development. Proc. Natl Acad. Sci. USA 92, 7565–7569 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. DeKruyff, R. H., Ju, S. T., Hunt, A. J., Mosmann, T. R. & Umetsu, D. T. Induction of antigen-specific antibody responses in primed and unprimed B cells. Functional heterogeneity among Th1 and Th2 T cell clones. J. Immunol. 142, 2575–2582 (1989).

    CAS  PubMed  Google Scholar 

  44. Kuchroo, V. K. et al. Cytokines and adhesion molecules contribute to the ability of myelin proteolipid protein-specific T cell clones to mediate experimental allergic encephalomyelitis. J. Immunol. 151, 4371–4382 (1993).

    CAS  PubMed  Google Scholar 

  45. Wong, R. L. et al. Subtypes of helper cells. Non-inflammatory type 1 helper T cells. J. Immunol. 141, 3329–3334 (1988).

    CAS  PubMed  Google Scholar 

  46. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Andrew, D. P. et al. C-C chemokine receptor 4 expression defines a major subset of circulating nonintestinal memory T cells of both Th1 and Th2 potential. J. Immunol. 166, 103–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Teraki, Y. & Picker, L. J. Independent regulation of cutaneous lymphocyte-associated antigen expression and cytokine synthesis phenotype during human CD4+ memory T cell differentiation. J. Immunol. 159, 6018–6029 (1997).

    CAS  PubMed  Google Scholar 

  49. Knibbs, R. N. et al. α(1,3)-fucosyltransferase VII-dependent synthesis of P- and E-selectin ligands on cultured T lymphoblasts. J. Immunol. 161, 6305–6315 (1998).

    CAS  PubMed  Google Scholar 

  50. Campbell, J. J. et al. 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3β receptor CCR7. J. Cell Biol. 141, 1053–1059 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Rott for cell sorting and J. Allison, J. Cyster, D. Soler, J. B. Lowe, O. Kanagawa and D. Umetsu for providing invaluable reagents. Supported by grants from the National Institutes of Health (E.C. B. and D. J. C.); an award from the Department of Veterans Affairs (E. C. B.); the FACS Core Facility of the Stanford Digestive Disease Center; the Arthritis Foundation (D. J. C.); and the Leukemia and Lymphoma Society (C. H. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Campbell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, D., Kim, C. & Butcher, E. Separable effector T cell populations specialized for B cell help or tissue inflammation. Nat Immunol 2, 876–881 (2001). https://doi.org/10.1038/ni0901-876

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-876

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing