Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential

Key Points

  • Soluble guanylate cyclase (sGC) is a key signal-transduction enzyme, which converts GTP to the second messenger cGMP in response to signalling from gaseous ligands, particularly nitric oxide (NO).

  • Alterations of the NO–sGC–cGMP pathway are implicated in a number of cardiovascular and other diseases; however, current therapies for these conditions involving NO-releasing drugs have a number of significant limitations.

  • Two NO-independent pharmacological modalities (sGC stimulators and sGC activators) have been recently developed.

  • Haem-dependent, direct sGC stimulators sensitize the reduced form of sGC to endogenous and exogenous NO.

  • Haem-independent, direct sGC activators re-activate oxidized or haem-free states of sGC that have become unresponsive to NO as a result of disease processes (such as oxidative stress).

  • These compounds have greatly enhanced our understanding of the NO–sGC–cGMP signalling pathway and, for the first time, mechanism-based vasodilators specific for diseased blood vessels have become available.

  • Pharmacological stimulation/activation of sGC could be useful for chronic therapy of cardiovascular diseases that was previously limited by the development of tolerance following prolonged administration of conventional NO-based vasodilators.

  • Pulmonary hypertension and essential hypertension could be the first clinical applications for sGC stimulators, whereas heart failure might be the first clinical application for sGC activators.

  • Non-vascular applications could further extend the spectrum of clinical indications and direct sGC activators might also be useful in vascular response diagnostics.

Abstract

Soluble guanylate cyclase (sGC) is a key signal-transduction enzyme activated by nitric oxide (NO). Impaired bioavailability and/or responsiveness to endogenous NO has been implicated in the pathogenesis of cardiovascular and other diseases. Current therapies that involve the use of organic nitrates and other NO donors have limitations, including non-specific interactions of NO with various biomolecules, lack of response and the development of tolerance following prolonged administration. Compounds that activate sGC in an NO-independent manner might therefore provide considerable therapeutic advantages. Here we review the discovery, biochemistry, pharmacology and clinical potential of haem-dependent sGC stimulators (including YC-1, BAY 41-2272, BAY 41-8543, CFM-1571 and A-350619) and haem-independent sGC activators (including BAY 58-2667 and HMR-1766).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The NO–sGC–cGMP signal transduction pathway and potential drug targets.
Figure 2: Homology model of the haem-binding domain of the human soluble guanylate cyclase (sGC) β-subunit.
Figure 3: Soluble guanylate cyclase (sGC) redox equilibrium.
Figure 4: NO–sGC–cGMP signalling in a blood vessel.

Similar content being viewed by others

References

  1. Feelisch, M. The use of nitric oxide donors in pharmacological studies. Naunyn Schmiedebergs Arch Pharmacol 358, 113–122 (1998).

    CAS  PubMed  Google Scholar 

  2. Chen, Z., Zhang, J. & Stamler, J. S. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc. Natl Acad. Sci. USA 99, 8306–8311 (2002).

    CAS  PubMed  Google Scholar 

  3. Li, Y. et al. Mitochondrial aldehyde dehydrogenase-2 (ALDH2) Glu504Lys polymorphism contributes to the variation in efficacy of sublingual nitroglycerin. J. Clin. Invest. 116, 506–511 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Munzel, T., Daiber, A. & Mulsch, A. Explaining the phenomenon of nitrate tolerance. Circ. Res. 97, 618–628 (2005).

    PubMed  Google Scholar 

  5. Dikalov, S., Fink, B., Skatchkov, M., Stalleicken, D. & Bassenge, E. Formation of reactive oxygen species by pentaerithrityltetranitrate and glyceryl trinitrate in vitro and development of nitrate tolerance. J. Pharmacol. Exp. Ther. 286, 938–944 (1998).

    CAS  PubMed  Google Scholar 

  6. Hofmann, F., Feil, R., Kleppisch, T. & Schlossmann, J. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol. Rev. 86, 1–23 (2006).

    CAS  PubMed  Google Scholar 

  7. Beavo, J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 75, 725–748 (1995).

    CAS  PubMed  Google Scholar 

  8. Agullo, L. et al. Membrane association of nitric oxide-sensitive guanylyl cyclase in cardiomyocytes. Cardiovasc. Res. 68, 65–74 (2005).

    CAS  PubMed  Google Scholar 

  9. Zabel, U. et al. Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nature Cell Biol. 4, 307–311 (2002). This study describes membrane association of sGC and the spatial confinement of enzymes involved in the NO–sGC–cGMP signalling pathway.

    CAS  PubMed  Google Scholar 

  10. Burette, A., Zabel, U., Weinberg, R. J., Schmidt, H. H. H. W. & Valtschanoff, J. G. Synaptic localization of nitric oxide synthase and soluble guanylyl cyclase in the hippocampus. J Neurosci 22, 8961–8970 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Russwurm, M., Wittau, N. & Koesling, D. Guanylyl cyclase/PSD-95 interaction: targeting of the nitric oxide-sensitive α2β1 guanylyl cyclase to synaptic membranes. J. Biol. Chem. 276, 44647–44652 (2001).

    CAS  PubMed  Google Scholar 

  12. Zabel, U., Hausler, C., Weeger, M. & Schmidt, H. H. H. W. Homodimerization of soluble guanylyl cyclase subunits. Dimerization analysis using a glutathione s-transferase affinity tag. J. Biol. Chem. 274, 18149–18152 (1999).

    CAS  PubMed  Google Scholar 

  13. Mayer, B. & Koesling, D. cGMP signalling beyond nitric oxide. Trends Pharmacol. Sci. 22, 546–548 (2001).

    CAS  PubMed  Google Scholar 

  14. Zabel, U., Weeger, M., La, M. & Schmidt, H. H. H. W. Human soluble guanylate cyclase: functional expression and revised isoenzyme family. Biochem. J. 335, 51–57 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Iyer, L. M., Anantharaman, V. & Aravind, L. Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins. BMC Genomics 4, 5 (2003).

    PubMed  PubMed Central  Google Scholar 

  16. Nioche, P. et al. Femtomolar sensitivity of a NO sensor from Clostridium botulinum. Science 306, 1550–1553 (2004). The first crystallization study of a prokaryotic homologue of the sGC haem-binding domain termed SONO.

    CAS  PubMed  Google Scholar 

  17. Pellicena, P., Karow, D. S., Boon, E. M., Marletta, M. A. & Kuriyan, J. Crystal structure of an oxygen-binding heme domain related to soluble guanylate cyclases. Proc. Natl Acad. Sci. USA 101, 12854–12859 (2004). The first crystallization study of a prokaryotic homologue of the sGC haem-binding domain termed HNOX.

    CAS  PubMed  Google Scholar 

  18. Schmidt, P. M., Schramm, M., Schroder, H., Wunder, F. & Stasch, J. P. Identification of residues crucially involved in the binding of the heme moiety of soluble guanylate cyclase. J. Biol. Chem. 279, 3025–3032 (2004). The first description of the haem-binding motif Y-x-S-x-R. This work also postulates a mechanism of sGC activation by the haem-independent activator BAY 58–2667 and explains its selective interaction with the oxidized enzyme.

    CAS  PubMed  Google Scholar 

  19. Wedel, B. et al. Mutation of His-105 in the β1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc. Natl Acad. Sci. USA 91, 2592–2596 (1994).

    CAS  PubMed  Google Scholar 

  20. Sunahara, R. K. et al. Exchange of substrate and inhibitor specificities between adenylyl and guanylyl cyclases. J. Biol. Chem. 273, 16332–16338 (1998).

    CAS  PubMed  Google Scholar 

  21. Tesmer, J. J., Sunahara, R. K., Gilman, A. G. & Sprang, S. R. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsα–GTPγS. Science 278, 1907–1916 (1997).

    CAS  PubMed  Google Scholar 

  22. Hobbs, A. Soluble guanylate cyclase. Emerg. Therap. Targets 735–749 (2000).

    CAS  Google Scholar 

  23. Winger, J. A. & Marletta, M. A. Expression and characterization of the catalytic domains of soluble guanylate cyclase: interaction with the heme domain. Biochemistry 44, 4083–4090 (2005).

    CAS  PubMed  Google Scholar 

  24. Schmidt, H. H. H. W. & Walter, U. NO at work. Cell 78, 919–925 (1994).

    CAS  Google Scholar 

  25. Li, Z. et al. A stimulatory role for cGMP-dependent protein kinase in platelet activation. Cell 112, 77–86 (2003).

    CAS  PubMed  Google Scholar 

  26. Gambaryan, S. et al. Potent inhibition of human platelets by cGMP analogs independent of cGMP-dependent protein kinase. Blood 103, 2593–2600 (2004).

    CAS  PubMed  Google Scholar 

  27. Schwarz, U. R., Walter, U. & Eigenthaler, M. Taming platelets with cyclic nucleotides. Biochem. Pharmacol. 62, 1153–1161 (2001).

    CAS  PubMed  Google Scholar 

  28. Feil, R., Feil, S. & Hofmann, F. A heretical view on the role of NO and cGMP in vascular proliferative diseases. Trends Mol. Med. 11, 71–75 (2005).

    CAS  PubMed  Google Scholar 

  29. Wolfsgruber, W. et al. A proatherogenic role for cGMP-dependent protein kinase in vascular smooth muscle cells. Proc. Natl Acad. Sci. USA 100, 13519–13524 (2003).

    CAS  PubMed  Google Scholar 

  30. Melichar, V. O. et al. Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. Proc. Natl Acad. Sci. USA 101, 16671–16676 (2004).

    CAS  PubMed  Google Scholar 

  31. Sinnaeve, P. et al. Soluble guanylate cyclase α1 and β1 gene transfer increases NO responsiveness and reduces neointima formation after balloon injury in rats via antiproliferative and antimigratory effects. Circ. Res. 88, 103–109 (2001).

    CAS  PubMed  Google Scholar 

  32. Foerster, J., Harteneck, C., Malkewitz, J., Schultz, G. & Koesling, D. A functional heme-binding site of soluble guanylyl cyclase requires intact N-termini of α1 and β1 subunits. Eur. J. Biochem. 240, 380–386 (1996).

    CAS  PubMed  Google Scholar 

  33. Ignarro, L. J., Adams, J. B., Horwitz, P. M. & Wood, K. S. Activation of soluble guanylate cyclase by NO-hemo-proteins involves NO-heme exchange. Comparison of heme-containing and heme-deficient enzyme forms. J. Biol. Chem. 261, 4997–5002 (1986).

    CAS  PubMed  Google Scholar 

  34. Ignarro, L. J., Wood, K. S. & Wolin, M. S. Activation of purified soluble guanylate cyclase by protoporphyrin IX. Proc. Natl Acad. Sci. USA 79, 2870–2873 (1982).

    CAS  PubMed  Google Scholar 

  35. Ballou, D. P., Zhao, Y., Brandish, P. E. & Marletta, M. A. Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: the simple NO-binding model is incorrect. Proc. Natl Acad. Sci. USA 99, 12097–12101 (2002).

    CAS  PubMed  Google Scholar 

  36. Zhao, Y., Brandish, P. E., Ballou, D. P. & Marletta, M. A. A molecular basis for nitric oxide sensing by soluble guanylate cyclase. Proc. Natl Acad. Sci. USA 96, 14753–14758 (1999). This paper suggests the existence of a second non-haem NO-binding site to explain the kinetics of the NO-induced sGC activation.

    CAS  PubMed  Google Scholar 

  37. Cary, S. P., Winger, J. A. & Marletta, M. A. Tonic and acute nitric oxide signaling through soluble guanylate cyclase is mediated by nonheme nitric oxide, ATP, and GTP. Proc. Natl Acad. Sci. USA 102, 13064–13069 (2005).

    CAS  PubMed  Google Scholar 

  38. Russwurm, M. & Koesling, D. NO activation of guanylyl cyclase. EMBO J. 23, 4443–4450 (2004). The first evidence that NO-bound sGC can exist in a virtually inactive state.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Feelisch, M., Kotsonis, P., Siebe, J., Clement, B. & Schmidt, H. H. H. W. The soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a] quinoxalin-1-one is a nonselective heme protein inhibitor of nitric oxide synthase and other cytochrome P-450 enzymes involved in nitric oxide donor bioactivation. Mol. Pharmacol. 56, 243–253 (1999).

    CAS  PubMed  Google Scholar 

  40. Hwang, T. L., Wu, C. C. & Teng, C. M. Comparison of two soluble guanylyl cyclase inhibitors, methylene blue and ODQ, on sodium nitroprusside-induced relaxation in guinea-pig trachea. Br. J. Pharmacol. 125, 1158–1163 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kannan, M. S. & Johnson, D. E. Modulation of nitric oxide-dependent relaxation of pig tracheal smooth muscle by inhibitors of guanylyl cyclase and calcium activated potassium channels. Life Sci. 56, 2229–2238 (1995).

    CAS  PubMed  Google Scholar 

  42. Mayer, B., Brunner, F. & Schmidt, K. Novel actions of methylene blue. Eur. Heart J. 14 (Suppl. 1), 22–26 (1993).

    CAS  PubMed  Google Scholar 

  43. Olesen, S. P. et al. Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase. Br. J. Pharmacol. 123, 299–309 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Schrammel, A., Behrends, S., Schmidt, K., Koesling, D. & Mayer, B. Characterization of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one as a heme-site inhibitor of nitric oxide-sensitive guanylyl cyclase. Mol. Pharmacol. 50, 1–5 (1996).

    CAS  PubMed  Google Scholar 

  45. Zhao, Y. et al. Inhibition of soluble guanylate cyclase by ODQ. Biochemistry 39, 10848–10854 (2000).

    CAS  PubMed  Google Scholar 

  46. Stasch, J. P. et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J. Clin. Invest. 116, 2552–2561 (2006). This is the first demonstration that oxidized sGC exists in vivo and increases under conditions of oxidative stress associated with cardiovascular diseases. This study also shows the increased potency of BAY 58–2667 under these conditions.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ko, F. N., Wu, C. C., Kuo, S. C., Lee, F. Y. & Teng, C. M. YC-1, a novel activator of platelet guanylate cyclase. Blood 84, 4226–4233 (1994). The first description of a non-NO-based sGC stimulator.

    CAS  PubMed  Google Scholar 

  48. Friebe, A., Schultz, G. & Koesling, D. Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. EMBO J. 15, 6863–6868 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoenicka, M. et al. Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon monoxide. J. Mol. Med. 77, 14–23 (1999).

    CAS  PubMed  Google Scholar 

  50. Mulsch, A. et al. Effect of YC-1, an NO-independent, superoxide-sensitive stimulator of soluble guanylyl cyclase, on smooth muscle responsiveness to nitrovasodilators. Br. J. Pharmacol. 120, 681–689 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fernandez, P. A., Bellamy, T., Kling, M., Madge, D. J. & Selwood, D. L. A convenient route to the solubkle guanylate cyclase activator YC-1 and its N2 regioisomer. Heterocycles 55, 1813–1816 (2001).

    CAS  Google Scholar 

  52. Lee, F. Y. et al. Synthesis of 1-benzyl-3-(5′-hydroxymethyl-2′-furyl)indazole analogues as novel antiplatelet agents. J. Med. Chem. 44, 3746–3749 (2001).

    CAS  PubMed  Google Scholar 

  53. Selwood, D. L. et al. Synthesis and biological evaluation of novel pyrazoles and indazoles as activators of the nitric oxide receptor, soluble guanylate cyclase. J. Med. Chem. 44, 78–93 (2001).

    CAS  PubMed  Google Scholar 

  54. Straub, A. et al. NO-independent stimulators of soluble guanylate cyclase. Bioorg. Med. Chem. Lett. 11, 781–784 (2001).

    CAS  PubMed  Google Scholar 

  55. Zhang, H. Q., Zhiren, X., Teodozyj, K. & Dinges, J. A concise synthesis of ortho-substituted aryl-acrylamide- potent activators od soluble guanylyl cyclase. Tetrahedron Lett. 44, 8661–8663 (2003).

    CAS  Google Scholar 

  56. Wu, C. C., Ko, F. N., Kuo, S. C., Lee, F. Y. & Teng, C. M. YC-1 inhibited human platelet aggregation through NO-independent activation of soluble guanylate cyclase. Br. J. Pharmacol. 116, 1973–1978 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Stasch, J. P. et al. NO-independent regulatory site on soluble guanylate cyclase. Nature 410, 212–215 (2001). The first biochemical and pharmacological characterization of BAY 41-2272 as a novel NO-independent but haem-dependent stimulator of sGC.

    CAS  PubMed  Google Scholar 

  58. Martin, E., Lee, Y. C. & Murad, F. YC-1 activation of human soluble guanylyl cyclase has both heme-dependent and heme-independent components. Proc. Natl Acad. Sci. USA 98, 12938–12942 (2001).

    CAS  PubMed  Google Scholar 

  59. Garthwaite, J. et al. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol. Pharmacol. 48, 184–188 (1995).

    CAS  PubMed  Google Scholar 

  60. Russwurm, M., Mergia, E., Mullershausen, F. & Koesling, D. Inhibition of deactivation of NO-sensitive guanylyl cyclase accounts for the sensitizing effect of YC-1. J. Biol. Chem. 277, 24883–24888 (2002).

    CAS  PubMed  Google Scholar 

  61. Stone, J. R. & Marletta, M. A. Synergistic activation of soluble guanylate cyclase by YC-1 and carbon monoxide: implications for the role of cleavage of the iron-histidine bond during activation by nitric oxide. Chem. Biol. 5, 255–261 (1998).

    CAS  PubMed  Google Scholar 

  62. Denninger, J. W. et al. Interaction of soluble guanylate cyclase with YC-1: kinetic and resonance Raman studies. Biochemistry 39, 4191–4198 (2000).

    CAS  PubMed  Google Scholar 

  63. Galle, J. et al. Effects of the soluble guanylyl cyclase activator, YC-1, on vascular tone, cyclic GMP levels and phosphodiesterase activity. Br. J. Pharmacol. 127, 195–203 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Friebe, A., Russwurm, M., Mergia, E. & Koesling, D. A point-mutated guanylyl cyclase with features of the YC-1-stimulated enzyme: implications for the YC-1 binding site? Biochemistry 38, 15253–15257 (1999).

    CAS  PubMed  Google Scholar 

  65. Friebe, A. et al. Functions of conserved cysteines of soluble guanylyl cyclase. Biochemistry 36, 1194–1198 (1997).

    CAS  PubMed  Google Scholar 

  66. Yazawa, S., Tsuchiya, H., Hori, H. & Makino, R. Functional characterization of two nucleotide binding sites in soluble guanylate cyclase. J. Biol. Chem. 281, 21763–21770 (2006).

    CAS  PubMed  Google Scholar 

  67. Stasch, J. P. et al. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vitro studies. Br. J. Pharmacol. 135, 333–343 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Stasch, J. P., Dembowsky, K., Perzborn, E., Stahl, E. & Schramm, M. Cardiovascular actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vivo studies. Br. J. Pharmacol. 135, 344–355 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bischoff, E. & Stasch, J. P. Effects of the sGC stimulator BAY 41-2272 are not mediated by phosphodiesterase 5 inhibition. Circulation 110, e320–321 (2004).

    Google Scholar 

  70. Schmidt, P., Schramm, M., Schroder, H. & Stasch, J. P. Mechanisms of nitric oxide independent activation of soluble guanylyl cyclase. Eur. J. Pharmacol. 468, 167–174 (2003).

    CAS  PubMed  Google Scholar 

  71. Mullershausen, F., Russwurm, M., Friebe, A. & Koesling, D. Inhibition of phosphodiesterase type 5 by the activator of nitric oxide-sensitive guanylyl cyclase BAY 41-2272. Circulation 109, 1711–1713 (2004).

    CAS  PubMed  Google Scholar 

  72. Evgenov, O. V. et al. Soluble guanylate cyclase activator reverses acute pulmonary hypertension and augments the pulmonary vasodilator response to inhaled nitric oxide in awake lambs. Circulation 110, 2253–2259 (2004). The first in vivo demonstration that a sGC stimulator, BAY 41-2272, attenuates pulmonary hypertension and also enhances pulmonary vasodilatation induced by inhaling gaseous NO.

    CAS  PubMed  Google Scholar 

  73. Kalsi, J. S., Ralph, D. J., Madge, D. J., Kell, P. D. & Cellek, S. A comparative study of sildenafil, NCX-911 and BAY41-2272 on the anococcygeus muscle of diabetic rats. Int. J. Impot. Res. 16, 479–485 (2004).

    CAS  PubMed  Google Scholar 

  74. Hering, K. W., Artz, J. D., Pearson, W. H. & Marletta, M. A. The design and synthesis of YC-1 analogues as probes for soluble guanylate cyclase. Bioorg. Med. Chem. Lett. 16, 618–621 (2006).

    CAS  PubMed  Google Scholar 

  75. Bawankule, D. U. et al. BAY 41-2272 [5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyri midin-4-ylamine]-induced dilation in ovine pulmonary artery: role of sodium pump. J. Pharmacol. Exp. Ther. 314, 207–213 (2005).

    CAS  PubMed  Google Scholar 

  76. Hobbs, A. J. & Moncada, S. Antiplatelet properties of a novel, non-NO-based soluble guanylate cyclase activator, BAY 41-2272. Vascul. Pharmacol. 40, 149–154 (2003).

    CAS  PubMed  Google Scholar 

  77. Wu, C. H., Chang, W. C., Chang, G. Y., Kuo, S. C. & Teng, C. M. The inhibitory mechanism of YC-1, a benzyl indazole, on smooth muscle cell proliferation: an in vitro and in vivo study. J. Pharmacol. Sci. 94, 252–260 (2004).

    CAS  PubMed  Google Scholar 

  78. Miller, L. N. et al. A-350619: a novel activator of soluble guanylyl cyclase. Life Sci. 72, 1015–1025 (2003). Biochemical and pharmacological characterization of A-350619 as a NO-independent but haem-dependent stimulator of sGC.

    CAS  PubMed  Google Scholar 

  79. Nakane, M. Soluble guanylyl cyclase: physiological role as an NO receptor and the potential molecular target for therapeutic application. Clin. Chem. Lab. Med. 41, 865–870 (2003).

    CAS  PubMed  Google Scholar 

  80. Stasch, J. P. et al. NO- and haem-independent activation of soluble guanylyl cyclase: molecular basis and cardiovascular implications of a new pharmacological principle. Br. J. Pharmacol. 136, 773–783 (2002). The first biochemical and pharmacological characterization of a compound, BAY 58–2667, capable of activating the haem-free and/or oxidized form of sGC.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wunder, F. et al. A cell-based cGMP assay useful for ultra-high-throughput screening and identification of modulators of the nitric oxide/cGMP pathway. Anal. Biochem. 339, 104–112 (2005).

    CAS  PubMed  Google Scholar 

  82. Schindler, U. et al. Biochemistry and pharmacology of novel anthranilic acid derivatives activating heme-oxidized soluble guanylyl cyclase. Mol. Pharmacol. 69, 1260–1268 (2006). Biochemical and pharmacological characterization of a novel structural class (HMR-1766 and S-3448) capable of activating the oxidized and/or haem-free forms of sGC.

    CAS  PubMed  Google Scholar 

  83. Schmidt, P. M., Rothkegel, C., Wunder, F., Schroder, H. & Stasch, J. P. Residues stabilizing the heme moiety of the nitric oxide sensor soluble guanylate cyclase. Eur. J. Pharmacol. 513, 67–74 (2005).

    CAS  PubMed  Google Scholar 

  84. Hobbs, A. J. Soluble guanylate cyclase: an old therapeutic target re-visited. Br. J. Pharmacol. 136, 637–640 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Fields, L. E. et al. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension 44, 398–404 (2004).

    CAS  PubMed  Google Scholar 

  86. Panza, J. A., Casino, P. R., Badar, D. M. & Quyyumi, A. A. Effect of increased availability of endothelium-derived nitric oxide precursor on endothelium-dependent vascular relaxation in normal subjects and in patients with essential hypertension. Circulation 87, 1475–1481 (1993).

    CAS  PubMed  Google Scholar 

  87. Schlaich, M. P. et al. Impaired L-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects. Circulation 110, 3680–3686 (2004).

    CAS  PubMed  Google Scholar 

  88. Taddei, S. et al. Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94, 1298–1303 (1996).

    CAS  PubMed  Google Scholar 

  89. Kojda, G., Kottenberg, K., Hacker, A. & Noack, E. Alterations of the vascular and the myocardial guanylate cyclase/cGMP-system induced by long-term hypertension in rats. Pharm. Acta Helv. 73, 27–35 (1998).

    CAS  PubMed  Google Scholar 

  90. Kloss, S., Bouloumie, A. & Mulsch, A. Aging and chronic hypertension decrease expression of rat aortic soluble guanylyl cyclase. Hypertension 35, 43–47 (2000).

    CAS  PubMed  Google Scholar 

  91. Ruetten, H., Zabel, U., Linz, W. & Schmidt, H. H. H. W. Downregulation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats. Circ. Res. 85, 534–541 (1999). This paper shows that, apart from NO synthesis and bioavailability, sGC can be affected in vascular disease models.

    CAS  PubMed  Google Scholar 

  92. Morawietz, H. et al. Upregulation of vascular NAD(P)H oxidase subunit gp91phox and impairment of the nitric oxide signal transduction pathway in hypertension. Biochem. Biophys. Res. Commun. 285, 1130–1135 (2001).

    CAS  PubMed  Google Scholar 

  93. Kagota, S. et al. Disturbances in nitric oxide/cyclic guanosine monophosphate system in SHR/NDmcr-cp rats, a model of metabolic syndrome. Life Sci. 78, 1187–1196 (2006).

    CAS  PubMed  Google Scholar 

  94. Brandes, R. P. et al. Increased nitrovasodilator sensitivity in endothelial nitric oxide synthase knockout mice: role of soluble guanylyl cyclase. Hypertension 35, 231–236 (2000).

    CAS  PubMed  Google Scholar 

  95. Rothermund, L., Friebe, A., Paul, M., Koesling, D. & Kreutz, R. Acute blood pressure effects of YC-1-induced activation of soluble guanylyl cyclase in normotensive and hypertensive rats. Br. J. Pharmacol. 130, 205–208 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zanfolin, M. et al. Protective effects of BAY 41-2272 (sGC stimulator) on hypertension, heart, and cardiomyocyte hypertrophy induced by chronic L-NAME treatment in rats. J. Cardiovasc. Pharmacol. 47, 391–395 (2006).

    CAS  PubMed  Google Scholar 

  97. Rothkegel, C. et al. Beyond NO and heme: biochemical and pharmacological opportunities. BMC Pharmacol. 5, S18 (2005).

    Google Scholar 

  98. Farber, H. W. & Loscalzo, J. Pulmonary arterial hypertension. N. Engl. J. Med. 351, 1655–1665 (2004).

    CAS  PubMed  Google Scholar 

  99. Machado, R. F. et al. Nitric oxide and pulmonary arterial pressures in pulmonary hypertension. Free Radic. Biol. Med. 37, 1010–1017 (2004).

    CAS  PubMed  Google Scholar 

  100. Ichinose, F., Roberts, J. D. Jr., & Zapol, W. M. Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 109, 3106–3111 (2004).

    PubMed  Google Scholar 

  101. Chockalingam, A. et al. Efficacy and optimal dose of sildenafil in primary pulmonary hypertension. Int. J. Cardiol. 99, 91–95 (2005).

    PubMed  Google Scholar 

  102. Michelakis, E. et al. Oral sildenafil is an effective and specific pulmonary vasodilator in patients with pulmonary arterial hypertension: comparison with inhaled nitric oxide. Circulation 105, 2398–2403 (2002).

    CAS  PubMed  Google Scholar 

  103. Stocker, C. et al. Intravenous sildenafil and inhaled nitric oxide: a randomised trial in infants after cardiac surgery. Intensive Care Med. 29, 1996–2003 (2003).

    PubMed  Google Scholar 

  104. Weimann, J. et al. Sildenafil is a pulmonary vasodilator in awake lambs with acute pulmonary hypertension. Anesthesiology 92, 1702–1712 (2000).

    CAS  PubMed  Google Scholar 

  105. Deruelle, P., Grover, T. R. & Abman, S. H. Pulmonary vascular effects of nitric oxide-cGMP augmentation in a model of chronic pulmonary hypertension in fetal and neonatal sheep. Am. J. Physiol. Lung Cell Mol. Physiol. 289, L798–806 (2005).

    Google Scholar 

  106. Deruelle, P., Grover, T. R., Storme, L. & Abman, S. H. Effects of BAY 41-2272, a soluble guanylate cyclase activator, on pulmonary vascular reactivity in the ovine fetus. Am. J. Physiol. Lung Cell Mol. Physiol. 288, L727–733 (2005).

    Google Scholar 

  107. Boerrigter, G. et al. Cardiorenal and humoral properties of a novel direct soluble guanylate cyclase stimulator BAY 41-2272 in experimental congestive heart failure. Circulation 107, 686–689 (2003). The first demonstration that a sGC stimulator, BAY 41-2272, attenuates experimental congestive heart failure.

    CAS  PubMed  Google Scholar 

  108. Deruelle, P. et al. BAY 41-2272, a direct activator of soluble guanylate cyclase, reduces right ventricular hypertrophy and prevents pulmonary vascular remodeling during chronic hypoxia in neonatal rats. Biol. Neonate 90, 135–144 (2006).

    CAS  PubMed  Google Scholar 

  109. Dumitrascu, R. et al. Activation of soluble guanylate cyclase reverses experimental pulmonary hypertension and vascular remodeling. Circulation 113, 286–295 (2006).

    CAS  PubMed  Google Scholar 

  110. Evgenov, O. V. et al. Inhalation of microparticles containing stimulators of soluble guanylate cyclase produces potent pulmonary vasodilation. Proc. Am. Thorac. Soc. 3, A686 (2006).

    Google Scholar 

  111. Austin, S. Drug discovery technology Europe 2006- IBC's Tenth Annual Conference and Exhibition. IDrugs 9, 256–260 (2006).

    CAS  PubMed  Google Scholar 

  112. Hunt, S. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J. Am. Coll. Cardiol. 46, e1–e82 (2005).

    PubMed  Google Scholar 

  113. Hare, J. M. & Stamler, J. S. NO/redox disequilibrium in the failing heart and cardiovascular system. J. Clin. Invest. 115, 509–517 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Pacher, P., Schulz, R., Liaudet, L. & Szabo, C. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol. Sci. 26, 302–310 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ungvari, Z., Gupte, S. A., Recchia, F. A., Batkai, S. & Pacher, P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr. Vasc. Pharmacol. 3, 221–229 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Boerrigter, G. & Burnett, J. C. Jr. Recent advances in natriuretic peptides in congestive heart failure. Expert Opin. Investig. Drugs 13, 643–652 (2004).

    CAS  PubMed  Google Scholar 

  117. Mulsch, A., Bara, A., Mordvintcev, P., Vanin, A. & Busse, R. Specificity of different organic nitrates to elicit NO formation in rabbit vascular tissues and organs in vivo. Br. J. Pharmacol. 116, 2743–2749 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Boerrigter, G., Costello-Boerrigter, L. C., Lapp, H., Stasch, J. P. & Burnett, J. C. Co-activation of soluble and particulate guanylate cyclase by BAY 58–2667 and BNP enhances cardiorenal function in experimental heart failure. BMC Pharmacol. 5, P5 (2005).

  119. Strong, J. P. et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 281, 727–735 (1999).

    CAS  PubMed  Google Scholar 

  120. Ip, J. H. et al. Syndromes of accelerated atherosclerosis: role of vascular injury and smooth muscle cell proliferation. J. Am. Coll. Cardiol. 15, 1667–1687 (1990).

    CAS  PubMed  Google Scholar 

  121. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    CAS  PubMed  Google Scholar 

  122. Serruys, P. W., Kutryk, M. J. & Ong, A. T. Coronary-artery stents. N. Engl. J. Med. 354, 483–495 (2006).

    CAS  PubMed  Google Scholar 

  123. Shears, L. L. et al. Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. J. Am. Coll. Surg. 187, 295–306 (1998).

    PubMed  Google Scholar 

  124. von der Leyen, H. E. et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc. Natl Acad. Sci. USA 92, 1137–1141 (1995).

    CAS  PubMed  Google Scholar 

  125. Marks, D. S. et al. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J. Clin. Invest. 96, 2630–2638 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Seki, J., Nishio, M., Kato, Y., Motoyama, Y. & Yoshida, K. FK409, a new nitric-oxide donor, suppresses smooth muscle proliferation in the rat model of balloon angioplasty. Atherosclerosis 117, 97–106 (1995).

    CAS  PubMed  Google Scholar 

  127. Tulis, D. A. et al. YC-1, a benzyl indazole derivative, stimulates vascular cGMP and inhibits neointima formation. Biochem. Biophys. Res. Commun. 279, 646–652 (2000). This study shows for the first time that a direct stimulator of sGC reduces post-angioplasty stenosis through endogenous NO-mediated, cGMP-dependent processes.

    CAS  PubMed  Google Scholar 

  128. Liu, Y. N. et al. YC-1 [3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole] inhibits neointima formation in balloon-injured rat carotid through suppression of expressions and activities of matrix metalloproteinases 2 and 9. J. Pharmacol. Exp. Ther. 316, 35–41 (2006).

    CAS  PubMed  Google Scholar 

  129. Tulis, D. A. Salutary properties of YC-1 in the cardiovascular and hematological systems. Curr. Med. Chem. Cardiovasc. Hematol. Agents 2, 343–359 (2004).

    CAS  PubMed  Google Scholar 

  130. Tulis, D. A., Durante, W. & Schafer, A. Nitric oxide-independent regulation of the vascular injury response. BMC Pharmacol. 5, S26 (2005).

    Google Scholar 

  131. Ahluwalia, A. et al. Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. Proc. Natl Acad. Sci. USA 101, 1386–1391 (2004). The first demonstration that a sGC stimulator attenuates vascular inflammation by inhibiting P-selectin expression and leukocyte recruitment.

    CAS  PubMed  Google Scholar 

  132. Feldman, H. A., Goldstein, I., Hatzichristou, D. G., Krane, R. J. & McKinlay, J. B. Impotence and its medical and psychosocial correlates: results of the Massachusetts Male Aging Study. J. Urol. 151, 54–61 (1994).

    CAS  PubMed  Google Scholar 

  133. Andersson, K. E. Pharmacology of penile erection. Pharmacol. Rev. 53, 417–450 (2001).

    CAS  PubMed  Google Scholar 

  134. Andersson, K. E. & Wagner, G. Physiology of penile erection. Physiol. Rev. 75, 191–236 (1995).

    CAS  PubMed  Google Scholar 

  135. Ignarro, L. J. et al. Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochem. Biophys. Res. Commun. 170, 843–850 (1990).

    CAS  PubMed  Google Scholar 

  136. Rajfer, J., Aronson, W. J., Bush, P. A., Dorey, F. J. & Ignarro, L. J. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N. Engl. J. Med. 326, 90–94 (1992).

    CAS  PubMed  Google Scholar 

  137. Boolell, M. et al. Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int. J. Impot. Res. 8, 47–52 (1996).

    CAS  PubMed  Google Scholar 

  138. Hsieh, G. C., O'Neill, A. B., Moreland, R. B., Sullivan, J. P. & Brioni, J. D. YC-1 potentiates the nitric oxide/cyclic GMP pathway in corpus cavernosum and facilitates penile erection in rats. Eur. J. Pharmacol. 458, 183–189 (2003).

    CAS  PubMed  Google Scholar 

  139. Mizusawa, H., Hedlund, P., Brioni, J. D., Sullivan, J. P. & Andersson, K. E. Nitric oxide independent activation of guanylate cyclase by YC-1 causes erectile responses in the rat. J. Urol. 167, 2276–2281 (2002). The first in vivo study showing that direct pharmacological stimulation of sGC evokes erectile response and enhances erection induced by neural stimulation.

    CAS  PubMed  Google Scholar 

  140. Nakane, M. et al. Activation of soluble guanylate cyclase causes relaxation of corpus cavernosum tissue: synergism of nitric oxide and YC-1. Int. J. Impot. Res. 14, 121–127 (2002).

    CAS  PubMed  Google Scholar 

  141. Baracat, J. S. et al. Relaxing effects induced by the soluble guanylyl cyclase stimulator BAY 41-2272 in human and rabbit corpus cavernosum. Eur. J. Pharmacol. 477, 163–169 (2003).

    CAS  PubMed  Google Scholar 

  142. Kalsi, J. S. et al. BAY41-2272, a novel nitric oxide independent soluble guanylate cyclase activator, relaxes human and rabbit corpus cavernosum in vitro. J. Urol. 169, 761–766 (2003).

    CAS  PubMed  Google Scholar 

  143. Bischoff, E., Schramm, M., Straub, A., Feurer, A. & Stasch, J. P. BAY 41-2272: a stimulator of soluble guanylyl cyclase induces nitric oxide-dependent penile erection in vivo. Urology 61, 464–467 (2003).

    CAS  PubMed  Google Scholar 

  144. Gaedeke, J., Neumayer, H. H. & Peters, H. Pharmacological management of renal fibrotic disease. Expert Opin. Pharmacother. 7, 377–386 (2006).

    CAS  PubMed  Google Scholar 

  145. Peters, H. et al. NO mediates antifibrotic actions of L-arginine supplementation following induction of anti-thy1 glomerulonephritis. Kidney Int. 64, 509–518 (2003).

    CAS  PubMed  Google Scholar 

  146. Peters, H. et al. Expression and activity of soluble guanylate cyclase in injury and repair of anti-thy1 glomerulonephritis. Kidney Int. 66, 2224–2236 (2004). The first in vivo evidence that pharmacological stimulation of sGC reduces fibrotic changes in glomerular disease.

    CAS  PubMed  Google Scholar 

  147. Hohenstein, B., Daniel, C., Wagner, A., Stasch, J. P. & Hugo, C. Stimulation of soluble guanylyl cyclase inhibits mesangial cell proliferation and matrix accumulation in experimental glomerulonephritis. Am. J. Physiol. Renal Physiol. 288, F685–693 (2005).

    Google Scholar 

  148. Wang, Y. et al. Stimulation of soluble guanylate cyclase slows progression in anti-thy1-induced chronic glomerulosclerosis. Kidney Int. 68, 47–61 (2005).

    CAS  PubMed  Google Scholar 

  149. Wang, Y. et al. Enhancing cGMP in experimental progressive renal fibrosis: soluble guanylate cyclase stimulation vs. phosphodiesterase inhibition. Am. J. Physiol. Renal Physiol. 290, F167–F176 (2006).

    CAS  PubMed  Google Scholar 

  150. Kalk, P. et al. NO-independent activation of soluble guanylate cyclase prevents disease progression in rats with 5/6 nephrectomy. Br. J. Pharmacol. 148, 853–859 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Albanis, E. & Friedman, S. L. Antifibrotic agents for liver disease. Am. J. Transplant. 6, 12–19 (2006).

    CAS  PubMed  Google Scholar 

  152. Perri, R. E. et al. Defects in cGMP-PKG pathway contribute to impaired NO-dependent responses in hepatic stellate cells upon activation. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G535–542 (2006).

    CAS  PubMed  Google Scholar 

  153. Hirth-Dietrich, C. et al. Antifibrotic effects of an sGC activator in rat models of liver fibrosis. BMC Pharmacol., P24 (2005).

  154. Lee, Y. C., Martin, E. & Murad, F. Human recombinant soluble guanylyl cyclase: expression, purification, and regulation. Proc. Natl Acad. Sci. USA 97, 10763–10768 (2000).

    CAS  PubMed  Google Scholar 

  155. Friebe, A. et al. YC-1 potentiates nitric oxide- and carbon monoxide-induced cyclic GMP effects in human platelets. Mol. Pharmacol. 54, 962–967 (1998).

    CAS  PubMed  Google Scholar 

  156. Cellek, S. The Rho-kinase inhibitor Y-27632 and the soluble guanylyl cyclase activator BAY41-2272 relax rabbit vaginal wall and clitoral corpus cavernosum. Br. J. Pharmacol. 138, 287–290 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Teixeira, C. E., Priviero, F. B., Todd, J. Jr., & Webb, R. C. Vasorelaxing effect of BAY 41-2272 in rat basilar artery: involvement of cGMP-dependent and independent mechanisms. Hypertension 47, 596–602 (2006).

    CAS  PubMed  Google Scholar 

  158. Wharton, J. et al. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am. J. Respir. Crit. Care Med. 172, 105–113 (2005).

    PubMed  Google Scholar 

  159. Straub, A. et al. Metabolites of orally active NO-independent pyrazolopyridine stimulators of soluble guanylate cyclase. Bioorg. Med. Chem. 10, 1711–1717 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Sexton for generating the sGC homology model. This publication was supported in part by the National Heart, Lung, and Blood Institute and the Intramural Research Program of National Institutes of Health (USA) and the Alexander von Humboldt Foundation (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Evgenov.

Ethics declarations

Competing interests

O.V.E. is a co-inventor of a pending patent application on enhancing the effectiveness of an inhaled therapeutic gas by using sGC stimulators. P.M.S. was employed by Bayer HealthCare from 2000 to 2003. H.H.H.W.S. is a co-inventor of a patent on the use of human sGC, owned by Vasopharm GmbH, and he holds shares in that company. J.-P.S. is a full time employee of Bayer HealthCare. He has filed several patent applications on sGC stimulators (for example, BAY 41-2272 and BAY 41-8543) and sGC activators (for example, BAY 58-2667). P.P. and G. H. have no competing interests that might be perceived to influence the results and discussion reported in this paper.

Related links

Related links

FURTHER INFORMATION

International Conference on cGMP

Glossary

Haem-binding domain

A conserved domain, present in various proteins that are involved in gas and/or redox sensing, that can bind a prosthetic haem moiety, which is, in turn, responsible for binding gaseous ligands such as NO, O2 or CO.

Prosthetic haem moiety

Haem is the prosthetic group of various gas and/or redox-sensing proteins and consists of a large heterocyclic organic ring called porphyrin and a central metal atom (for example, iron, copper or zinc).

Redox state

A term used to reflect the oxidation state of the prosthetic haem moiety of sGC, which can exist in a reduced (ferrous; Fe2+) or an oxidized (ferric; Fe3+) state. The oxidized form of sGC is insensitive to NO.

Reactive oxygen species

Collective term for highly reactive molecules formed by the incomplete one-electron reduction of oxygen, and the products of further potential reactions (for example with NO). They include singlet oxygen, superoxide, peroxides, hydroxyl radical, peroxynitrite and hypochlorous acid.

EC50

The molecular concentration of an agonist that is required to produce 50% of the maximum response to that agonist.

K d

The equilibrium dissociation constant of a compound that reflects the concentration needed to reach half-maximal saturation of binding sites. Kd reflects the strength of binding of a compound to its specific binding site.

Spatial structure

The occupation of three-dimensional space by a given chemical compound or protein.

Porphyrin

A heterocyclic macrocycle made from four pyrrole rings joined by methine bridges (=CH-).

Methaemoglobinaemia

The presence of increased concentrations of methaemoglobin (resulting from the oxidation of haemoglobin) in blood. Methaemoglobin lacks the electron that is needed to form a bond with oxygen and is therefore incapable of oxygen transport to tissues.

Cardiac index

The volume of blood pumped by the heart every minute normalized to body surface area.

Restenosis

A re-narrowing of an artery at the site of angioplasty or stent placement.

Autocoid

A substance, such as a hormone, produced in one part of an organism and transported by blood or lymph to another part of the organism where it exerts a physiological effect.

Neointima

A new layer of endothelial cells on the inner surface of a blood vessel graft or a vascular prosthesis.

Mesangial cells

Phagocytic cells found in the mesangium of the glomerular capsule of the kidney that are thought to aid in cleaning the filtration apparatus.

Hepatic stellate cells

Cells that reside between the parenchymal cells and sinusoidal endothelial cells of the hepatic lobule and are the major storage site of vitamin A. In chronic liver injury (for example, chronic hepatitis), these hepatic cells produce collagen and other extracellular matrix proteins that lead to liver fibrosis and cirrhosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evgenov, O., Pacher, P., Schmidt, P. et al. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat Rev Drug Discov 5, 755–768 (2006). https://doi.org/10.1038/nrd2038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd2038

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing