Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decision making in the immune system

The lineage decisions of helper T cells

Key Points

  • Helper T (TH)-cell differentiation is remarkably plastic, with many extrinsic signals affecting the balance of effector subsets.

  • The role of cytokines as a purely instructive signal, causing undifferentiated cells to express new genes, is being re-examined. Among the newly recognized functions are the abilities of cytokines to mediate selective growth or survival and to repress the transcription of lineage-determining activators of the opposing fate.

  • Epigenetic effects seem to have a crucial role in organizing TH-cell differentiation. Some genes are induced by chromatin remodelling, which is a heritable trait of differentiated cells.

  • CpG demethylation of cytokine loci might be an imprinting mechanism that ensures the heritability of the expressing state.

  • Gene silencing seems to contribute to differentiation in at least two ways. The transcription of lineage-determining activator genes seems to become heritably silenced and their target cytokine loci seem to undergo physical repositioning in terminally differentiated cells of the opposing fate.

Abstract

After encountering antigen, helper T (TH) cells undergo differentiation to effector cells, which can secrete high levels of interferon-γ, interleukin-4 (IL-4), IL-10 and other immunomodulators. How TH cells acquire, and remember, new patterns of gene expression is an area of intensive investigation. The process is remarkably plastic, with cytokines being key regulators. Extrinsic signals seem to be integrated into cell-intrinsic programming, in what is becoming an intriguing story of regulated development. We summarize the latest insights into mechanisms that govern the lineage choices that are made during TH-cell responses to foreign pathogens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The original instructive model of helper T-cell differentiation.
Figure 2: Pathways for the induction of expression of IL-4.
Figure 3: Pathways for the induction of expression of IFN-γ.
Figure 4: Redundant pathways of TH2-cell development — integration at the level of GATA3 transcription.
Figure 5: Models of secondary roles for cytokines in differentiation.
Figure 6: Model of orderly derepression of the IL-4 gene.
Figure 7: Model of stages of TH1-cell induction and maturation.
Figure 8: Relationships between pathogens, the innate immune system and TH-cell development.

Similar content being viewed by others

References

  1. Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Ho, I. C. & Glimcher, L. H. Transcription: tantalizing times for T cells. Cell 109, S109–S120 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. & Coffman, R. L. Two types of murine helper T-cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  4. Szabo, S. J. et al. Distinct effects of T-bet in TH1-lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Szabo, S. J. et al. A novel transcription factor, T-bet, directs TH1-lineage commitment. Cell 100, 655–669 (2000). This study reported the cloning and characterization of T-bet, which is a key regulator of T helper 1 (T H 1)-lineage commitment.

    Article  CAS  PubMed  Google Scholar 

  6. Mullen, A. C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Mullen, A. C. et al. Hlx is induced by and genetically interacts with T-bet to promote heritable TH1 gene induction. Nature Immunol. 3, 652–658 (2002).

    Article  CAS  Google Scholar 

  8. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent TH2 development and commitment. Immunity 12, 27–37 (2000). This study showed that GATA3 might act independently of STAT6 and that GATA3 induces chromatin remodelling of the IL-4 locus.

    Article  CAS  PubMed  Google Scholar 

  9. Ouyang, W. et al. Inhibition of TH1 development mediated by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745–755 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Zheng, W. & Flavell, R. A. The transcription factor GATA-3 is necessary and sufficient for TH2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, D. H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in murine TH1 and TH2 cells and controls TH2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997). References 10 and 11 were the first studies to implicate GATA3 as a T H 2-cell-specific transcription factor.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, H. J. et al. GATA-3 induces T helper cell type 2 (TH2) cytokine expression and chromatin remodeling in committed TH1 cells. J. Exp. Med. 192, 105–115 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, G. R., Fields, P. E. & Flavell, R. A. Regulation of IL-4 gene expression by distal regulatory elements and GATA-3 at the chromatin level. Immunity 14, 447–459 (2001). This study defined the regulatory elements of the IL-4 locus that mediate GATA3-dependent chromatin induction.

    Article  CAS  PubMed  Google Scholar 

  14. Ferber, I. A. et al. GATA-3 significantly downregulates IFN-γ production from developing TH1 cells in addition to inducing IL-4 and IL-5 levels. Clin. Immunol. 91, 134–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Hsieh, C. S., Heimberger, A. B., Gold, J. S., O'Garra, A. & Murphy, K. M. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an αβ T-cell-receptor transgenic system. Proc. Natl Acad. Sci. USA 89, 6065–6069 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seder, R. A., Paul, W. E., Davis, M. M. & Fazekas de St Groth, B. The presence of interleukin-4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T-cell-receptor-transgenic mice. J. Exp. Med. 176, 1091–1098 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D. & Paul, W. E. Generation of interleukin-4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 172, 921–929 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Swain, S. L., Weinberg, A. D., English, M. & Huston, G. IL-4 directs the development of TH2-like helper effectors. J. Immunol. 145, 3796–3806 (1990).

    CAS  PubMed  Google Scholar 

  19. Kaplan, M. H., Schindler, U., Smiley, S. T. & Grusby, M. J. Stat6 is required for mediating responses to IL-4 and for development of TH2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Shimoda, K. et al. Lack of IL-4-induced TH2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Ho, I. C., Hodge, M. R., Rooney, J. W. & Glimcher, L. H. The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973–983 (1996). This study was the first to identify c-MAF as a T H 2-cell-specific transcription factor.

    Article  CAS  PubMed  Google Scholar 

  23. Ho, I. C., Lo, D. & Glimcher, L. H. c-maf promotes T helper cell type 2 (TH2) and attenuates TH1 differentiation by both interleukin-4-dependent and -independent mechanisms. J. Exp. Med. 188, 1859–1866 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, J. I., Ho, I. C., Grusby, M. J. & Glimcher, L. H. The transcription factor c-Maf controls the production of interleukin-4 but not other TH2 cytokines. Immunity 10, 745–751 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Hendriks, R. W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T-cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Pandolfi, P. P. et al. Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal-liver haematopoiesis. Nature Genet. 11, 40–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Ting, C. N., Olson, M. C., Barton, K. P. & Leiden, J. M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998).

    CAS  PubMed  Google Scholar 

  29. Takemoto, N. et al. Cutting edge: chromatin remodeling at the IL-4/IL-13 intergenic regulatory region for TH2-specific cytokine gene cluster. J. Immunol. 165, 6687–6691 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, D. H. et al. Inhibition of allergic inflammation in a murine model of asthma by expression of a dominant-negative mutant of GATA-3. Immunity 11, 473–482 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Finotto, S. et al. Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J. Exp. Med. 193, 1247–1260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kimura, M. et al. Regulation of TH2-cell differentiation by mel-18, a mammalian polycomb-group gene. Immunity 15, 275–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Francis, N. J. & Kingston, R. E. Mechanisms of transcriptional memory. Nature Rev. Mol. Cell. Biol. 2, 409–421 (2001).

    Article  CAS  Google Scholar 

  34. Zhou, M. et al. Friend of GATA-1 represses GATA-3-dependent activity in CD4+ T cells. J. Exp. Med. 194, 1461–1471 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kurata, H. et al. Friend of GATA is expressed in naive TH cells and functions as a repressor of GATA-3-mediated TH2-cell development. J. Immunol. 168, 4538–4545 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Miaw, S. C., Choi, A., Yu, E., Kishikawa, H. & Ho, I. C. ROG, repressor of GATA, regulates the expression of cytokine genes. Immunity 12, 323–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nature Immunol. 3, 549–557 (2002).

    Article  CAS  Google Scholar 

  38. Finotto, S. et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 295, 336–338 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Hentsch, B. et al. Hlx homeobox gene is essential for an inductive tissue interaction that drives expansion of embryonic liver and gut. Genes Dev. 10, 70–79 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Lighvani, A. A. et al. T-bet is rapidly induced by interferon-γ in lymphoid and myeloid cells. Proc. Natl Acad. Sci. USA 98, 15137–15142 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peng, S. L., Gerth, A. J., Ranger, A. M. & Glimcher, L. H. NFATc1 and NFATc2 together control both T- and B-cell activation and differentiation. Immunity 14, 13–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Robinson, D. et al. IGIF does not drive TH1 development but synergizes with IL-12 for interferon-γ production and activates IRAK and NF-κB. Immunity 7, 571–581 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, J., Murphy, T. L., Ouyang, W. & Murphy, K. M. Induction of interferon-γ production in TH1 CD4+ T cells: evidence for two distinct pathways for promoter activation. Eur. J. Immunol. 29, 548–555 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Neighbors, M. et al. A critical role for interleukin-18 in primary and memory effector responses to Listeria monocytogenes that extends beyond its effects on interferon-γ production. J. Exp. Med. 194, 343–354 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takeda, K. et al. Defective NK-cell activity and TH1 response in IL-18-deficient mice. Immunity 8, 383–390 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Yang, J., Zhu, H., Murphy, T. L., Ouyang, W. & Murphy, K. M. IL-18-stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production. Nature Immunol. 2, 157–164 (2001).

    Article  CAS  Google Scholar 

  47. Lu, B. et al. GADD45γ mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 14, 583–590 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Rincon, M. et al. Interferon-γ expression by TH1 effector T cells mediated by the p38 MAP kinase signaling pathway. EMBO J. 17, 2817–2829 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dong, C., Davis, R. J. & Flavell, R. A. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Lertmemongkolchai, G., Cai, G., Hunter, C. A. & Bancroft, G. J. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-γ in response to bacterial pathogens. J. Immunol. 166, 1097–1105 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Yap, G., Pesin, M. & Sher, A. Cutting edge: IL-12 is required for the maintenance of IFN-γ production in T cells mediating chronic resistance to the intracellular pathogen, Toxoplasma gondii. J. Immunol. 165, 628–631 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Park, A. Y., Hondowicz, B. D. & Scott, P. IL-12 is required to maintain a TH1 response during Leishmania major infection. J. Immunol. 165, 896–902 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Stobie, L. et al. The role of antigen and IL-12 in sustaining TH1 memory cells in vivo: IL-12 is required to maintain memory/effector TH1 cells sufficient to mediate protection to an infectious parasite challenge. Proc. Natl Acad. Sci. USA 97, 8427–8432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kinjo, Y. et al. Contribution of IL-18 to TH1 response and host defense against infection by Mycobacterium tuberculosis: a comparative study with IL-12 p40. J. Immunol. 169, 323–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Oppmann, B. et al. Novel p19 protein engages IL-12 p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Parham, C. et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J. Immunol. 168, 5699–5708 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Belladonna, M. L. et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J. Immunol. 168, 5448–5454 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Pflanz, S. et al. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. Immunity 16, 779–790 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Devergne, O. et al. A novel interleukin-12 p40-related protein induced by latent Epstein–Barr virus infection in B lymphocytes. J. Virol. 70, 1143–1153 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, Q. et al. Development of TH1-type immune responses requires the type I cytokine receptor TCCR. Nature 407, 916–920 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Yoshida, H. et al. WSX-1 is required for the initiation of TH1 responses and resistance to L. major infection. Immunity 15, 569–578 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Robinson, D. S. & O'Garra, A. Further checkpoints in TH1 development. Immunity 16, 755–758 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Huang, H. & Paul, W. E. Impaired interleukin-4 signaling in T helper type 1 cells. J. Exp. Med. 187, 1305–1313 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Szabo, S. J., Dighe, A. S., Gubler, U. & Murphy, K. M. Regulation of the interleukin (IL)-12R β2-subunit expression in developing T helper 1 (TH1) and TH2 cells. J. Exp. Med. 185, 817–824 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kurata, H., Lee, H. J., O'Garra, A. & Arai, N. Ectopic expression of activated Stat6 induces the expression of TH2-specific cytokines and transcription factors in developing TH1 cells. Immunity 11, 677–688 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Zhu, J. et al. Growth factor independent-1 induced by IL-4 regulates TH2-cell proliferation. Immunity 16, 733–744 (2002). This study identified GFI1 as a downstream mediator of STAT6 signal transduction. It provides a basis for how IL-4 can induce the proliferation of T H 2 cells selectively.

    Article  CAS  PubMed  Google Scholar 

  67. Farrar, J. D. et al. An instructive component in T helper cell type 2 (TH2) development mediated by GATA-3. J. Exp. Med. 193, 643–650 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Finkelman, F. D. et al. Stat6 regulation of in vivo IL-4 responses. J. Immunol. 164, 2303–2310 (2000).

  69. Jankovic, D. et al. Single-cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a TH2 cytokine profile. J. Immunol. 164, 3047–3055 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Rodriguez-Palmero, M., Hara, T., Thumbs, A. & Hunig, T. Triggering of T-cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur. J. Immunol. 29, 3914–3924 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Das, J. et al. A critical role for NF-κB in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nature Immunol. 2, 45–50 (2001).

    Article  CAS  Google Scholar 

  72. Ghosh, P., Tan, T. H., Rice, N. R., Sica, A. & Young, H. A. The interleukin-2 CD28-responsive complex contains at least three members of the NF-κB family: c-Rel, p50 and p65. Proc. Natl Acad. Sci. USA 90, 1696–1700 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rissoan, M. C. et al. Reciprocal control of T-helper-cell and dendritic-cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, Y. J., Kanzler, H., Soumelis, V. & Gilliet, M. Dendritic-cell lineage, plasticity and cross-regulation. Nature Immunol. 2, 585–589 (2001).

    Article  CAS  Google Scholar 

  75. Greenwald, R. J., Latchman, Y. E. & Sharpe, A. H. Negative co-receptors on lymphocytes. Curr. Opin. Immunol. 14, 391–396 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Salomon, B. & Bluestone, J. A. LFA-1 interaction with ICAM-1 and ICAM-2 regulates TH2 cytokine production. J. Immunol. 161, 5138–5142 (1998).

    CAS  PubMed  Google Scholar 

  77. Camacho, S. A. et al. A key role for ICAM-1 in generating effector cells mediating inflammatory responses. Nature Immunol. 2, 523–529 (2001).

    Article  CAS  Google Scholar 

  78. Luksch, C. R. et al. Intercellular adhesion molecule-1 inhibits interleukin-4 production by naive T cells. Proc. Natl Acad. Sci. USA 96, 3023–3028 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Smits, H. H. et al. Intercellular adhesion molecule-1/LFA-1 ligation favors human TH1 development. J. Immunol. 168, 1710–1716 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Ben-Sasson, S. Z., Gerstel, R., Hu-Li, J. & Paul, W. E. Cell division is not a 'clock' measuring acquisition of competence to produce IFN-γ or IL-4. J. Immunol. 166, 112–120 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Bird, J. J. et al. Helper T-cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998). This study was one of the first to propose a role for cell-cycle and epigenetic effects in T H -cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  82. Mullen, A. C. et al. Cell cycle controlling the silencing and functioning of mammalian activators. Curr. Biol. 11, 1695–1699 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Richter, A., Lohning, M. & Radbruch, A. Instruction for cytokine expression in T helper lymphocytes in relation to proliferation and cell-cycle progression. J. Exp. Med. 190, 1439–1450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Laouar, Y. & Crispe, I. N. Functional flexibility in T cells: independent regulation of CD4+ T-cell proliferation and effector function in vivo. Immunity 13, 291–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Sad, S. & Mosmann, T. R. Single IL-2-secreting precursor CD4 T cell can develop into either TH1 or TH2 cytokine secretion phenotype. J. Immunol. 153, 3514–3522 (1994).

    CAS  PubMed  Google Scholar 

  86. Heath, V. L. et al. Cutting edge: ectopic expression of the IL-12 receptor-β2 in developing and committed TH2 cells does not affect the production of IL-4 or induce the production of IFN-γ. J. Immunol. 164, 2861–2865 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Nishikomori, R. et al. Activated STAT4 has an essential role in TH1 differentiation and proliferation that is independent of its role in the maintenance of IL-12Rβ2 chain expression and signaling. J. Immunol. 169, 4388–4398 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R. M. Analysis of type-2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Doyle, A. M. et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J. Exp. Med. 194, 893–902 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic-cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nature Immunol. 1, 311–316 (2000).

    Article  CAS  Google Scholar 

  91. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Gorelik, L., Constant, S. & Flavell, R. A. Mechanism of transforming growth factor β-induced inhibition of T helper type 1 differentiation. J. Exp. Med. 195, 1499–1505 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gorelik, L., Fields, P. E. & Flavell, R. A. Cutting edge: TGF-β inhibits TH-type 2 development through inhibition of GATA-3 expression. J. Immunol. 165, 4773–4777 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Heath, V. L., Murphy, E. E., Crain, C., Tomlinson, M. G. & O'Garra, A. TGF-β1 down-regulates TH2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur. J. Immunol. 30, 2639–2649 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Neurath, M. F. et al. The transcription factor T-bet regulates mucosal T-cell activation in experimental colitis and Crohn's disease. J. Exp. Med. 195, 1129–1143 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Grogan, J. L. et al. Early transcription and silencing of cytokine genes underlie polarization of T-helper cell subsets. Immunity 14, 205–215 (2001). This study was one of the first to show that gene silencing mediated by trans -postioning of loci to heterochromatin might 'lock-in' states of T H -cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  97. Kamogawa, Y., Minasi, L. A., Carding, S. R., Bottomly, K. & Flavell, R. A. The relationship of IL-4- and IFN-γ-producing T cells studied by lineage ablation of IL-4-producing cells. Cell 75, 985–995 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Avni, O. et al. TH-cell differentiation is accompanied by dynamic changes in histone acetylation of cytokine genes. Nature Immunol. 3, 643–651 (2002).

    Article  CAS  Google Scholar 

  99. Fields, P. E., Kim, S. T. & Flavell, R. A. Cutting edge: changes in histone acetylation at the IL-4 and IFN-γ loci accompany TH1/TH2 differentiation. J. Immunol. 169, 647–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Hutchins, A. S. et al. Gene silencing quantitatively controls the function of a developmental trans-activator. Mol. Cell 10, 81–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T-cell differentiation. Immunity 9, 765–775 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Agarwal, S., Avni, O. & Rao, A. Cell-type-restricted binding of the transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 643–652 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Richards, E. J. & Elgin, S. C. R. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 108, 489–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Ng, H. H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nature Genet. 23, 58–61 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Nan, X. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393, 386–389 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Jones, P. L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nature Genet. 19, 187–191 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Jackson, J. P., Lindroth, A. M., Cao, X. & Jacobsen, S. E. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416, 556–560 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Jeddeloh, J. A., Stokes, T. L. & Richards, E. J. Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nature Genet. 22, 94–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  109. Dennis, K., Fan, T., Geiman, T., Yan, Q. & Muegge, K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev. 15, 2940–2944 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Lee, D. U., Agarwal, S. & Rao, A. TH2-lineage commitment and efficient IL-4 production involves extended demethylation of the IL-4. Immunity 16, 649–660 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Lee, P. P. et al. A critical role for Dnmt1 and DNA methylation in T-cell development, function and survival. Immunity 15, 763–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Loots, G. G. et al. Identification of a coordinate regulator of interleukins 4, 13 and 5 by cross-species sequence comparisons. Science 288, 136–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Mohrs, M. et al. Deletion of a coordinate regulator of type-2 cytokine expression in mice. Nature Immunol. 2, 842–847 (2001).

    Article  CAS  Google Scholar 

  115. Solymar, D. C., Agarwal, S., Bassing, C. H., Alt, F. W. & Rao, A. A 3′ enhancer in the IL-4 gene regulates cytokine production by TH2 cells and mast cells. Immunity 17, 41–50 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  117. Zhang, D. H., Yang, L. & Ray, A. Differential responsiveness of the IL-5 and IL-4 genes to transcription factor GATA-3. J. Immunol. 161, 3817–3821 (1998).

    CAS  PubMed  Google Scholar 

  118. Takemoto, N., Arai, K. & Miyatake, S. Cutting edge: the differential involvement of the N-finger of GATA-3 in chromatin remodeling and transactivation during TH2 development. J. Immunol. 169, 4103–4107 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  120. Hsieh, C. S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  PubMed  Google Scholar 

  121. Murphy, K. M. et al. Signaling and transcription in T-helper development. Annu. Rev. Immunol. 18, 451–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Stetson, D. B., Mohrs, M., Mallet-Designe, V., Teyton, L. & Locksley, R. M. Rapid expansion and IL-4 expression by Leishmania-specific naive helper T cells in vivo. Immunity 17, 191–200 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M. Murphy.

Related links

Related links

DATABASES

LocusLink

B7H

CD28

c-MAF

Dnmt1

EBI3

FOG1

GADD45β

GADD45γ

GATA3

GATA4

GFI1

HFN3β

HLX

ICAM1

ICOS

IFN-γ

IL-4

IL-5

IL-6

IL-12

IL-12Rβ1

IL-12Rβ2

IL-13

Il-18

IL-23α

LFA1

Mbd2

MEL18

NFAT

p28

p38 MAPK

ROG

STAT1

STAT4

STAT6

T-bet

TGF-β

type I IFNs

WSX1

Glossary

EPIGENETIC

Refers to the heritable, but potentially reversible, states of gene activity that are imposed by the structure of chromatin or covalent modifications of DNA and histones.

CHROMATIN

Composed of nucleosomes, which are the basic repeating units of eukaryotic genomes. Nucleosomes consist of 146 base pairs of DNA wound around an octamer of histone proteins.

GADD-FAMILY PROTEIN

(Growth-arrest and DNA-damage inducible proteins). In response to environmental stresses, these proteins mediate activation of the p38 mitogen-activated protein kinase pathway and are involved in the regulation of growth and apoptosis.

HISTONE CODE

Refers to various post-translational modifications of histones that might impose states of gene activity or silence.

DNASE-I HYPERSENSITIVITY

Refers to sites of nuclease sensitivity when nuclei from cells are exposed to limiting concentrations of DNase I. The digested regions of DNA correspond to sites of open DNA, which might be factor-binding sites or areas of altered nucleosome conformation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, K., Reiner, S. The lineage decisions of helper T cells. Nat Rev Immunol 2, 933–944 (2002). https://doi.org/10.1038/nri954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing