Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circulating biomarkers for gliomas

Key Points

  • Biomarkers from gliomas can be detected in the blood and cerebrospinal fluid

  • Known mutations, such as the epidermal growth factor receptor variant III (EGFRvIII), can be detected by analysing soluble, circulating proteins or circulating tumour DNA

  • MicroRNAs—which are relevant as tumour regulators—can be found in extracellular vesicles (EVs) shed by the tumour cells

  • Circulating tumour cells are too scarce to enter routine clinical use as biomarkers to monitor response to therapy

  • Tumour heterogeneity, which is particularly pronounced in glioblastoma, calls for a strategy comprising multiple biomarker molecules; EVs contain several biomarker types, making them an appealing candidate for a comprehensive biomarker

  • Emerging immuno-oncological therapies have created a need for immunological biomarkers

Abstract

Currently, gliomas are diagnosed by neuroimaging, and refined diagnosis requires resection or biopsy to obtain tumour tissue for histopathological classification and grading. Blood-derived biomarkers, therefore, would be useful as minimally invasive markers that could support diagnosis and enable monitoring of tumour growth and response to treatment. Such circulating biomarkers could distinguish true progression from therapy-associated changes such as radiation necrosis, and help evaluate the persistence or disappearance of a therapeutic target, such as an oncoprotein or a targetable gene mutation, after targeted therapy. Unlike for other tumours, circulating biomarkers for gliomas are still being defined and are not yet in use in clinical practice. Circulating tumour DNA (ctDNA) isolated from plasma has been shown to reflect the mutational status of glioblastoma, and extracellular vesicles (EVs) containing ctDNA, microRNA and proteins function as rapidly adapting reservoirs for glioma biomarkers such as typical DNA mutations, regulatory microRNAs and oncoproteins. Ideally, circulating tumour cells could enable profiling of the whole-tumour genome, but they are difficult to detect and can reflect only a single cell type of the heterogeneous tumour composition, whereas EVs reflect the complex heterogeneity of the whole tumour, as well as its adaptations to therapy. Although all categories of potential blood-derived biomarkers need to be developed further, findings from other tumour types suggest that EVs are the most promising biomarkers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gliomas—genetic landscape and biomarkers.
Figure 2: The origin of circulating biomarkers for gliomas.

Similar content being viewed by others

References

  1. Freidlin, B. & Korn, E. L. Biomarker enrichment strategies: matching trial design to biomarker credentials. Nat. Rev. Clin. Oncol. 11, 81–90 (2014).

    Article  PubMed  Google Scholar 

  2. Alix-Panabieres, C. & Pantel, K. Circulating tumor cells: liquid biopsy of cancer. Clin. Chem. 59, 110–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Auer, M., Heitzer, E., Ulz, P., Geigl, J. B. & Speicher, M. R. Single circulating tumor cell sequencing for monitoring. Oncotarget 4, 812–813 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Heitzer, E., Ulz, P. & Geigl, J. B. Circulating tumor DNA as a liquid biopsy for cancer. Clin. Chem. 61, 112–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Mishra, P. J. Non-coding RNAs as clinical biomarkers for cancer diagnosis and prognosis. Expert Rev. Mol. Diagn. 14, 917–919 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsujiura, M. et al. Liquid biopsy of gastric cancer patients: circulating tumor cells and cell-free nucleic acids. World J. Gastroenterol. 20, 3265–3286 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brown, K. J. et al. The human secretome atlas initiative: implications in health and disease conditions. Biochim. Biophys. Acta 1834, 2454–2461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schaaij-Visser, T. B., de Wit, M., Lam, S. W. & Jimenez, C. R. The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context. Biochim. Biophys. Acta 1834, 2242–2258 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Crowley, E., Di Nicolantonio, F., Loupakis, F. & Bardelli, A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 10, 472–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Diaz, L. A. Jr & Bardelli, A. Liquid biopsies: genotyping circulating tumor DNA. J. Clin. Oncol. 32, 579–586 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Weller, M. et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol. 15, e395–e403 (2014).

    Article  PubMed  Google Scholar 

  12. Wen, P. Y. et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J. Clin. Oncol. 28, 1963–1972 (2010).

    Article  PubMed  Google Scholar 

  13. Kros, J. M. et al. Circulating glioma biomarkers. Neuro Oncol. 17, 343–360 (2014).

    PubMed  PubMed Central  Google Scholar 

  14. Louis, D. N. et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114, 97–109 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eckel-Passow, J. E. et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N. Engl. J. Med. 372, 2499–2508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reuss, D. E. et al. Adult IDH wild type astrocytomas biologically and clinically resolve into other tumor entities. Acta Neuropathol. 130, 407–417 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Weller, M. et al. Molecular classification of diffuse cerebral WHO grade II/III gliomas using genome- and transcriptome-wide profiling improves stratification of prognostically distinct patient groups. Acta Neuropathol. 129, 679–693 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Louis, D. N. et al. International Society Of Neuropathology—Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol. 24, 429–435 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Riemenschneider, M. J., Jeuken, J. W., Wesseling, P. & Reifenberger, G. Molecular diagnostics of gliomas: state of the art. Acta Neuropathol. 120, 567–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lai, R. K. et al. Genome-wide methylation analyses in glioblastoma multiforme. PLoS ONE 9, e89376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomas, L., Di Stefano, A. L. & Ducray, F. Predictive biomarkers in adult gliomas: the present and the future. Curr. Opin. Oncol. 25, 689–694 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Stupp, R. & Hegi, M. E. Neuro-oncology: oligodendroglioma and molecular markers. Lancet Neurol. 6, 10–12 (2007).

    Article  PubMed  Google Scholar 

  24. Aldape, K., Zadeh, G., Mansouri, S., Reifenberger, G. & von Deimling, A. Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 129, 829–848 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  26. Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9, 157–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Verhaak, R. G. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98–110 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sottoriva, A. et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc. Natl Acad. Sci. USA 110, 4009–4014 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Westphal, M. & Lamszus, K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat. Rev. Neurosci. 12, 495–508 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Brennan, C. W. et al. The somatic genomic landscape of glioblastoma. Cell 155, 462–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gollapalli, K. et al. Investigation of serum proteome alterations in human glioblastoma multiforme. Proteomics 12, 2378–2390 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Hermansen, S. K. & Kristensen, B. W. MicroRNA biomarkers in glioblastoma. J. Neurooncol. 114, 13–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Lang, M. F. et al. Genome-wide profiling identified a set of miRNAs that are differentially expressed in glioblastoma stem cells and normal neural stem cells. PLoS ONE 7, e36248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lemee, J. M. et al. Proteomic analysis of glioblastomas: what is the best brain control sample? J. Proteomics 85, 165–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Huang, S. S. et al. Linking proteomic and transcriptional data through the interactome and epigenome reveals a map of oncogene-induced signaling. PLoS Comput. Biol. 9, e1002887 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69, 89–95 (2001).

  37. Gutman, S. & Kessler, L. G. The US Food and Drug Administration perspective on cancer biomarker development. Nat. Rev. Cancer 6, 565–571 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Esteller, M. et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N. Engl. J. Med. 343, 1350–1354 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352, 997–1003 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352, 987–996 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Park, C. K. et al. The changes in MGMT promoter methylation status in initial and recurrent glioblastomas. Transl. Oncol. 5, 393–397 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cairncross, G. et al. Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma: long-term results of RTOG 9402. J. Clin. Oncol. 31, 337–343 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Eigenbrod, S. et al. Molecular stereotactic biopsy technique improves diagnostic accuracy and enables personalized treatment strategies in glioma patients. Acta Neurochir. (Wien) 156, 1427–1440 (2014).

    Article  Google Scholar 

  44. Ahluwalia, M. S. & Chang, S. M. Medical therapy of gliomas. J. Neurooncol. 119, 503–512 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wen, P. Y., Lee, E. Q., Reardon, D. A., Ligon, K. L. & Alfred Yung, W. K. Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro Oncol. 14, 819–829 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wick, W. et al. Pathway inhibition: emerging molecular targets for treating glioblastoma. Neuro Oncol. 13, 566–579 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chinot, O. L. et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 709–722 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Gilbert, M. R. et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N. Engl. J. Med. 370, 699–708 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eisele, G. et al. Cilengitide treatment of newly diagnosed glioblastoma patients does not alter patterns of progression. J. Neurooncol. 117, 141–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Chang-Hao Tsao, S. et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci. Rep. 5, 11198 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  51. Hochberg, F. H. et al. Glioma diagnostics and biomarkers: an ongoing challenge in the field of medicine and science. Expert Rev. Mol. Diagn. 14, 439–452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Minciacchi, V. R., Freeman, M. R. & Di Vizio, D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol. 40, 41–51 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Holdhoff, M., Yovino, S. G., Boadu, O. & Grossman, S. A. Blood-based biomarkers for malignant gliomas. J. Neurooncol. 113, 345–352 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elstner, A. et al. Identification of diagnostic serum protein profiles of glioblastoma patients. J. Neurooncol. 102, 71–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Heitzer, E., Auer, M., Ulz, P., Geigl, J. B. & Speicher, M. R. Circulating tumor cells and DNA as liquid biopsies. Genome Med. 5, 73 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dong, L. et al. miRNA microarray reveals specific expression in the peripheral blood of glioblastoma patients. Int. J. Oncol. 45, 746–756 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Chistiakov, D. A. & Chekhonin, V. P. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol. 35, 8425–8438 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Redzic, J. S., Ung, T. H. & Graner, M. W. Glioblastoma extracellular vesicles: reservoirs of potential biomarkers. Pharmgenomics Pers. Med. 7, 65–77 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Santiago-Dieppa, D. R. et al. Extracellular vesicles as a platform for 'liquid biopsy' in glioblastoma patients. Expert Rev. Mol. Diagn. 14, 819–825 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akers, J. C. et al. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS ONE 8, e78115 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Noerholm, M. et al. RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer 12, 22 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Manterola, L. et al. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro Oncol. 16, 520–527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mikaelian, I., Scicchitano, M., Mendes, O., Thomas, R. A. & Leroy, B. E. Frontiers in preclinical safety biomarkers: microRNAs and messenger RNAs. Toxicol. Pathol. 41, 18–31 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Toss, A., Mu, Z., Fernandez, S. & Cristofanilli, M. CTC enumeration and characterization: moving toward personalized medicine. Ann. Transl. Med. 2, 108 (2014).

    PubMed  PubMed Central  Google Scholar 

  65. Muller, C. et al. Hematogenous dissemination of glioblastoma multiforme. Sci. Transl. Med. 6, 247ra101 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Mimeault, M. & Batra, S. K. Molecular biomarkers of cancer stem/progenitor cells associated with progression, metastases, and treatment resistance of aggressive cancers. Cancer Epidemiol. Biomarkers Prev. 23, 234–254 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Popescu, I. D. et al. Potential serum biomarkers for glioblastoma diagnostic assessed by proteomic approaches. Proteome Sci. 12, 47 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lange, R. P. et al. Evaluation of eight plasma proteins as candidate blood-based biomarkers for malignant gliomas. Cancer Invest. 32, 423–429 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Capper, D. et al. 2-Hydroxyglutarate concentration in serum from patients with gliomas does not correlate with IDH1/2 mutation status or tumor size. Int. J. Cancer 131, 766–768 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shao, H. et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat. Med. 18, 1835–1840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schuster, J. et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol. 17, 854–861 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Francis, G. & Stein, S. Circulating cell-free tumour DNA in the management of cancer. Int. J. Mol. Sci. 16, 14122–14142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lebofsky, R. et al. Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types. Mol. Oncol. 9, 783–790 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lavon, I., Refael, M., Zelikovitch, B., Shalom, E. & Siegal, T. Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades. Neuro Oncol. 12, 173–180 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl. Med. 6, 224ra24 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Diaz, L. A., Jr. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, W. Y. et al. Plasma EBV DNA clearance rate as a novel prognostic marker for metastatic/recurrent nasopharyngeal carcinoma. Clin. Cancer Res. 16, 1016–1024 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics. Nat. Med. 14, 985–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Boisselier, B. et al. Detection of IDH1 mutation in the plasma of patients with glioma. Neurology 79, 1693–1698 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Floyd, D. & Purow, B. Micro-masters of glioblastoma biology and therapy: increasingly recognized roles for microRNAs. Neuro Oncol. 16, 622–627 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. McManus, M. T. MicroRNAs and cancer. Semin. Cancer Biol. 13, 253–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Godlewski, J., Krichevsky, A. M., Johnson, M. D., Chiocca, E. A. & Bronisz, A. Belonging to a network-microRNAs, extracellular vesicles, and the glioblastoma microenvironment. Neuro Oncol. 17, 652–662 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, X., Liang, H., Zhang, J., Zen, K. & Zhang, C. Y. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol. 22, 125–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Rosenfeld, N. et al. MicroRNAs accurately identify cancer tissue origin. Nat. Biotechnol. 26, 462–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Tumilson, C. A., Lea, R. W., Alder, J. E. & Shaw, L. Circulating microRNA biomarkers for glioma and predicting response to therapy. Mol. Neurobiol. 50, 545–558 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Hua, D. et al. A catalogue of glioblastoma and brain MicroRNAs identified by deep sequencing. OMICS 16, 690–699 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin, H. M. et al. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. Br. J. Cancer 110, 2462–2471 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sozzi, G. et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J. Clin. Oncol. 32, 768–773 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Srinivasan, S., Patric, I. R. & Somasundaram, K. A ten-microRNA expression signature predicts survival in glioblastoma. PLoS ONE 6, e17438 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hayes, J. et al. Prediction of clinical outcome in glioblastoma using a biologically relevant nine-microRNA signature. Mol. Oncol. 9, 704–714 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li, R. et al. Identification of intrinsic subtype-specific prognostic microRNAs in primary glioblastoma. J. Exp. Clin. Cancer Res. 33, 9 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sandmann, T. et al. Patients with proneural glioblastoma may derive overall survival benefit from the addition of bevacizumab to first-line radiotherapy and temozolomide: retrospective analysis of the AVAglio trial. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2015.61.5005.

  94. Chen, H., Li, X., Li, W. & Zheng, H. miR-130a can predict response to temozolomide in patients with glioblastoma multiforme, independently of O6-methylguanine-DNA methyltransferase. J. Transl. Med. 13, 69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kushwaha, D. et al. A genome-wide miRNA screen revealed miR-603 as a MGMT-regulating miRNA in glioblastomas. Oncotarget 5, 4026–4039 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Qu, S., Guan, J. & Liu, Y. Identification of microRNAs as novel biomarkers for glioma detection: a meta-analysis based on 11 articles. J. Neurol. Sci. 348, 181–187 (2015).

    Article  CAS  PubMed  Google Scholar 

  97. Teplyuk, N. M. et al. MicroRNAs in cerebrospinal fluid identify glioblastoma and metastatic brain cancers and reflect disease activity. Neuro Oncol. 14, 689–700 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang, W. et al. miR-181d: a predictive glioblastoma biomarker that downregulates MGMT expression. Neuro Oncol. 14, 712–719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Verbeek, B., Southgate, T. D., Gilham, D. E. & Margison, G. P. O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy. Br. Med. Bull. 85, 17–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Belting, M. & Wittrup, A. Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J. Cell Biol. 183, 1187–1191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fitzner, D. et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124, 447–458 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Kucharzewska, P. & Belting, M. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J. Extracell. Vesicles 2, 20304 (2013).

    Article  Google Scholar 

  103. Belting, M. & Christianson, H. C. Role of exosomes and microvesicles in hypoxia-associated tumour development and cardiovascular disease. J. Intern. Med. 278, 251–263 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Mathivanan, S. et al. Vesiclepedia [online], (2015).

    Google Scholar 

  105. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Morishita, M. et al. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J. Pharm. Sci. 104, 705–713 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Muller, L. et al. Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. Oncoimmunology 4, e1008347 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shao, H. et al. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun. 6, 6999 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Harshyne, L. A., Nasca, B. J., Kenyon, L. C., Andrews, D. W. & Hooper, D. C. Serum exosomes and cytokines promote a T-helper cell type 2 environment in the peripheral blood of glioblastoma patients. Neuro Oncol. http://dx.doi.org/10.1093/neuonc/nov107.

  110. Best, M. G. et al. Liquid biopsies in patients with diffuse glioma. Acta Neuropathol. 129, 849–865 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Antonyak, M. A. & Cerione, R. A. Microvesicles as mediators of intercellular communication in cancer. Methods Mol. Biol. 1165, 147–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Mahmoudi, K., Ezrin, A. & Hadjipanayis, C. Small extracellular vesicles as tumor biomarkers for glioblastoma. Mol. Aspects Med. http://dx.doi.org/10.1016/j.mam.2015.06.008.

  113. Muller, L., Hong, C. S., Stolz, D. B., Watkins, S. C. & Whiteside, T. L. Isolation of biologically-active exosomes from human plasma. J. Immunol. Methods 411, 55–65 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yoshioka, Y. et al. Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat. Commun. 5, 3591 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Santana, S. M., Antonyak, M. A., Cerione, R. A. & Kirby, B. J. Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations. Biomed. Microdevices 16, 869–877 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Atai, N. A. et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J. Neurooncol. 115, 343–351 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Bronisz, A. et al. Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1. Cancer Res. 74, 738–750 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Cossetti, C. et al. Extracellular vesicles from neural stem cells transfer IFN-γ via Ifngr1 to activate Stat1 signaling in target cells. Mol. Cell 56, 193–204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cirkel, G. A., Gadellaa-van Hooijdonk, C. G., Koudijs, M. J., Willems, S. M. & Voest, E. E. Tumor heterogeneity and personalized cancer medicine: are we being outnumbered? Future Oncol. 10, 417–428 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Macarthur, K. M. et al. Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay. Cancer Res. 74, 2152–2159 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sullivan, J. P. et al. Brain tumor cells in circulation are enriched for mesenchymal gene expression. Cancer Discov. 4, 1299–1309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Seymour, T., Nowak, A. & Kakulas, F. Targeting aggressive cancer stem cells in glioblastoma. Front. Oncol. 5, 159 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).

    CAS  PubMed  Google Scholar 

  124. Papadaki, M. A. et al. Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer. BMC Cancer 14, 651 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tinhofer, I., Saki, M., Niehr, F., Keilholz, U. & Budach, V. Cancer stem cell characteristics of circulating tumor cells. Int. J. Radiat. Biol. 90, 622–627 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Reardon, D. A., Ballman, K. V., Buckner, J. C., Chang, S. M. & Ellingson, B. M. Impact of imaging measurements on response assessment in glioblastoma clinical trials. Neuro Oncol. 16 (Suppl. 7), vii24–vii35 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Qiao, X. J. et al. Arterial spin-labeling perfusion MRI stratifies progression-free survival and correlates with epidermal growth factor receptor status in glioblastoma. AJNR Am. J. Neuroradiol. 36, 672–677 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li, Y. et al. Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging. Neuro Oncol. 15, 607–617 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chaumeil, M. M. et al. Hyperpolarized 13C MR spectroscopic imaging can be used to monitor Everolimus treatment in vivo in an orthotopic rodent model of glioblastoma. Neuroimage 59, 193–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Chaumeil, M. M. et al. Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. Cancer Res. 74, 4247–4257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nasrallah, I. & Dubroff, J. An overview of PET neuroimaging. Semin. Nucl. Med. 43, 449–461 (2013).

    Article  PubMed  Google Scholar 

  132. Linden, H. M. & Dehdashti, F. Novel methods and tracers for breast cancer imaging. Semin. Nucl. Med. 43, 324–329 (2013).

    Article  PubMed  Google Scholar 

  133. Jansen, N. L. et al. Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J. Nucl. Med. 56, 9–15 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Mankoff, D. A., Pryma, D. A. & Clark, A. S. Molecular imaging biomarkers for oncology clinical trials. J. Nucl. Med. 55, 525–528 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Reardon, D. A. et al. Immunotherapy advances for glioblastoma. Neuro Oncol. 16, 1441–1458 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Parney, I. F. Basic concepts in glioma immunology. Adv. Exp. Med. Biol. 746, 42–52 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Wurdinger, T., Deumelandt, K., van der Vliet, H. J., Wesseling, P. & de Gruijl, T. D. Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochim. Biophys. Acta 1846, 560–575 (2014).

    CAS  PubMed  Google Scholar 

  138. Graner, M. W. et al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J. 23, 1541–1557 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bodmer, S. et al. Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J. Immunol. 143, 3222–3229 (1989).

    CAS  PubMed  Google Scholar 

  140. Preusser, M., Lim, M., Hafler, D. A., Reardon, D. A. & Sampson, J. H. Prospects of immune checkpoint modulators in the treatment of glioblastoma. Nat. Rev. Neurol. http://dx.doi.org/10.1038/nrneurol.2015.139.

  141. Castro, M. G., Baker, G. J. & Lowenstein, P. R. Blocking immunosuppressive checkpoints for glioma therapy: the more the merrier! Clin. Cancer Res. 20, 5147–5149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Vlahovic, G., Fecci, P. E., Reardon, D. & Sampson, J. H. Programmed death ligand 1 (PD-L1) as an immunotherapy target in patients with glioblastoma. Neuro Oncol. 17, 1043–1045 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Berghoff, A. S. et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 17, 1064–1075 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Sims, J. S., Ung, T. H., Neira, J. A., Canoll, P. & Bruce, J. N. Biomarkers for glioma immunotherapy: the next generation. J. Neurooncol. 123, 359–372 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Albulescu, R. et al. Cytokine patterns in brain tumour progression. Mediators Inflamm. 2013, 979748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhou, M. et al. Circulating levels of the innate and humoral immune regulators CD14 and CD23 are associated with adult glioma. Cancer Res. 70, 7534–7542 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Arimappamagan, A. et al. A fourteen gene GBM prognostic signature identifies association of immune response pathway and mesenchymal subtype with high risk group. PLoS ONE 8, e62042 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Yin, Y. et al. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res. 24, 1164–1180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Katsuda, T., Kosaka, N. & Ochiya, T. The roles of extracellular vesicles in cancer biology: toward the development of novel cancer biomarkers. Proteomics 14, 412–425 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Cossetti, C. et al. Extracellular membrane vesicles and immune regulation in the brain. Front. Physiol. 3, 117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ellert-Miklaszewska, A. et al. Molecular definition of the pro-tumorigenic phenotype of glioma-activated microglia. Glia 61, 1178–1190 (2013).

    Article  PubMed  Google Scholar 

  152. Jiang, Y. & Uhrbom, L. On the origin of glioma. Ups. J. Med. Sci. 117, 113–121 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Deck, J. H., Eng, L. F. & Woodcock, S. M. The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol. 42, 183–190 (1978).

    Article  CAS  PubMed  Google Scholar 

  154. Guo, C., Pirozzi, C. J., Lopez, G. Y. & Yan, H. Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr. Opin. Neurol. 24, 648–652 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Neuro-oncology research in the Department of Neurosurgery, University Hospital Eppendorf has been supported by the Deutsche Forschungsgemeinschaft (LA1300), the Deutsche Krebshilfe, the Roggenbuck Stiftung, Hamburg and the Rickertsen Stiftung, Hamburg.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contribute equally to all aspects of preparation of the manuscript.

Corresponding author

Correspondence to Manfred Westphal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westphal, M., Lamszus, K. Circulating biomarkers for gliomas. Nat Rev Neurol 11, 556–566 (2015). https://doi.org/10.1038/nrneurol.2015.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.171

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer