Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tissue transglutaminase links TGF-β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer

Abstract

Tissue transglutaminase (TG2), an enzyme involved in cell proliferation, differentiation and apoptosis is overexpressed in ovarian carcinomas, where it modulates epithelial-to-mesenchymal transition (EMT) and promotes metastasis. Its regulation in ovarian cancer (OC) remains unexplored. Here, we show that transforming growth factor (TGF)-β, a cytokine involved in tumor dissemination is abundantly secreted in the OC microenvironment and induces TG2 expression and enzymatic activity. This is mediated at transcriptional level by SMADs and by TGF-β-activated kinase 1-mediated activation of the nuclear factor-κB complex. TGF-β-stimulated OC cells aggregate as spheroids, which enable peritoneal dissemination. We show that TGF-β-induced TG2 regulates EMT, formation of spheroids and OC metastasis. TG2 knock-down in OC cells decreases the number of cells harboring a cancer stem cell phenotype (CD44+/CD117+). Furthermore, CD44+/CD117+ cells isolated from human ovarian tumors express high levels of TG2. In summary, TGF-β-induced TG2 enhances ovarian tumor metastasis by inducing EMT and a cancer stem cell phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Abendstein B, Stadlmann S, Knabbe C, Buck M, Muller-Holzner E, Zeimet AG et al. (2000). Regulation of transforming growth factor-beta secretion by human peritoneal mesothelial and ovarian carcinoma cells. Cytokine 12: 1115–1119.

    Article  CAS  PubMed  Google Scholar 

  • Akhurst RJ, Derynck R . (2001). TGF-beta signaling in cancer--a double-edged sword. Trends Cell Biol 11: S44–S51.

    CAS  PubMed  Google Scholar 

  • Akimov SS, Belkin AM . (2001). Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98: 1567–1576.

    Article  CAS  PubMed  Google Scholar 

  • Al-Hajj M, Clarke MF . (2004). Self-renewal and solid tumor stem cells. Oncogene 23: 7274–7282.

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RL, Tran H, Karlan BY . (2003). Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling. Cancer Res 63: 1413–1419.

    CAS  PubMed  Google Scholar 

  • Bartlett JM, Langdon SP, Scott WN, Love SB, Miller EP, Katsaros D et al. (1997). Transforming growth factor-beta isoform expression in human ovarian tumours. Eur J Cancer 33: 2397–2403.

    Article  CAS  PubMed  Google Scholar 

  • Bristow RE, Baldwin RL, Yamada SD, Korc M, Karlan BY . (1999). Altered expression of transforming growth factor-beta ligands and receptors in primary and recurrent ovarian carcinoma. Cancer 85: 658–668.

    Article  CAS  PubMed  Google Scholar 

  • Cao L, Petrusca DN, Satpathy M, Nakshatri H, Petrache I, Matei D . (2008). Tissue transglutaminase protects epithelial ovarian cancer cells from cisplatin-induced apoptosis by promoting cell survival signaling. Carcinogenesis 29: 1893–1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardillo MR, Yap E, Castagna G . (1997). Molecular genetic analysis of TGF-beta1 in ovarian neoplasia. J Exp Clin Cancer Res 16: 49–56.

    CAS  PubMed  Google Scholar 

  • Chen T, Triplett J, Dehner B, Hurst B, Colligan B, Pemberton J et al. (2001). Transforming growth factor-beta receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Res 61: 4679–4682.

    CAS  PubMed  Google Scholar 

  • Chou CY, Streets AJ, Watson PF, Huang L, Verderio EA, Johnson TS . (2011). A crucial sequence for transglutaminase type 2 extracellular trafficking in renal tubular epithelial cells lies in its N-terminal {beta}-sandwich domain. J Biol Chem 286: 27825–27835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7: 1267–1278.

    Article  CAS  PubMed  Google Scholar 

  • Dennis PA, Rifkin DB . (1991). Cellular activation of latent transforming growth factor beta requires binding to the cation-independent mannose 6-phosphate/insulin-like growth factor type II receptor. Proc Natl Acad Sci USA 88: 580–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derynck R, Zhang YE . (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425: 577–584.

    Article  CAS  PubMed  Google Scholar 

  • Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dowdy SC, Mariani A, Janknecht R . (2003). HER2/Neu- and TAK1-mediated up-regulation of the transforming growth factor beta inhibitor Smad7 via the ETS protein ER81. J Biol Chem 278: 44377–44384.

    Article  CAS  PubMed  Google Scholar 

  • Dumont N, Bakin AV, Arteaga CL . (2003). Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells. J Biol Chem 278: 3275–3285.

    Article  CAS  PubMed  Google Scholar 

  • Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD . (2002). Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62: 5358–5364.

    CAS  PubMed  Google Scholar 

  • Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H et al. (1999). Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 274: 27161–27167.

    Article  CAS  PubMed  Google Scholar 

  • Hang J, Zemskov EA, Lorand L, Belkin AM . (2005). Identification of a novel recognition sequence for fibronectin within the NH2-terminal beta-sandwich domain of tissue transglutaminase. J Biol Chem 280: 23675–23683.

    Article  CAS  PubMed  Google Scholar 

  • Hocevar BA, Prunier C, Howe PH . (2005). Disabled-2 (Dab2) mediates transforming growth factor beta (TGFbeta)-stimulated fibronectin synthesis through TGFbeta-activated kinase 1 and activation of the JNK pathway. J Biol Chem 280: 25920–25927.

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Wu W, Nash MA, Freedman RS, Kavanagh JJ, Verschraegen CF . (2000). Anomalies of the TGF-beta postreceptor signaling pathway in ovarian cancer cell lines. Anticancer Res 20: 729–733.

    CAS  PubMed  Google Scholar 

  • Hurteau JA, Allison BM, Brutkiewicz SA, Goebl MG, Heilman DK, Bigsby RM et al. (2001). Expression and subcellular localization of the cyclin-dependent kinase inhibitor p27(Kip1) in epithelial ovarian cancer. Gynecol Oncol 83: 292–298.

    Article  CAS  PubMed  Google Scholar 

  • Kopp A, Jonat W, Schmahl M, Knabbe C . (1995). Transforming growth factor beta 2 (TGF-beta 2) levels in plasma of patients with metastatic breast cancer treated with tamoxifen. Cancer Res 55: 4512–4515.

    CAS  PubMed  Google Scholar 

  • Lopez-Rovira T, Chalaux E, Rosa JL, Bartrons R, Ventura F . (2000). Interaction and functional cooperation of NF-kappa B with Smads. Transcriptional regulation of the junB promoter. J Biol Chem 275: 28937–28946.

    Article  CAS  PubMed  Google Scholar 

  • Lynch MA, Nakashima R, Song H, DeGroff VL, Wang D, Enomoto T et al. (1998). Mutational analysis of the transforming growth factor beta receptor type II gene in human ovarian carcinoma. Cancer Res 58: 4227–4232.

    CAS  PubMed  Google Scholar 

  • Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY et al. (2006). Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-{kappa}B in cancer cells: delineation of a novel pathway. Cancer Res 66: 8788–8795.

    Article  CAS  PubMed  Google Scholar 

  • Massague J . (1996). TGFbeta signaling: receptors, transducers, and Mad proteins. Cell 85: 947–950.

    Article  CAS  PubMed  Google Scholar 

  • Matei D, Graeber TG, Baldwin RL, Karlan BY, Rao J, Chang DD . (2002). Gene expression in epithelial ovarian carcinoma. Oncogene 21: 6289–6298.

    Article  CAS  PubMed  Google Scholar 

  • Mehta K, Fok J, Miller FR, Koul D, Sahin AA . (2004). Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 10: 8068–8076.

    Article  CAS  PubMed  Google Scholar 

  • Mohammad KS, Javelaud D, Fournier PG, Niewolna M, McKenna CR, Peng XH et al. (2011). TGF-beta-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Res 71: 175–184.

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Bueno G, Cubillo E, Sarrio D, Peinado H, Rodriguez-Pinilla SM, Villa S et al. (2006). Genetic profiling of epithelial cells expressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47 factors in epithelial-mesenchymal transition. Cancer Res 66: 9543–9556.

    Article  CAS  PubMed  Google Scholar 

  • Nagafuchi A, Shirayoshi Y, Okazaki K, Yasuda K, Takeichi M . (1987). Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329: 341–343.

    Article  CAS  PubMed  Google Scholar 

  • Nilsson E, Doraiswamy V, Parrott JA, Skinner MK . (2001). Expression and action of transforming growth factor beta (TGFbeta1, TGFbeta2, TGFbeta3) in normal bovine ovarian surface epithelium and implications for human ovarian cancer. Mol Cell Endocrinol 182: 145–155.

    Article  CAS  PubMed  Google Scholar 

  • Perl AK, Wilgenbus P, Dahl U, Semb H, Christofori G . (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature 392: 190–193.

    Article  CAS  PubMed  Google Scholar 

  • Pincus JH, Waelsch H . (1968). The specificity of transglutaminase. II. Structural requirements of the amine substrate. Arch Biochem Biophys 126: 44–52.

    Article  CAS  PubMed  Google Scholar 

  • Qiao B, Padilla SR, Benya PD . (2005). Transforming growth factor (TGF)-beta-activated kinase 1 mimics and mediates TGF-beta-induced stimulation of type II collagen synthesis in chondrocytes independent of Col2a1 transcription and Smad3 signaling. J Biol Chem 280: 17562–17571.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez GC, Haisley C, Hurteau J, Moser TL, Whitaker R, Bast Jr RC et al. (2001). Regulation of invasion of epithelial ovarian cancer by transforming growth factor-beta. Gynecol Oncol 80: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Satpathy M, Cao L, Pincheira R, Emerson R, Bigsby R, Nakshatri H et al. (2007). Enhanced peritoneal ovarian tumor dissemination by tissue transglutaminase. Cancer Res 67: 7194–7202.

    Article  CAS  PubMed  Google Scholar 

  • Satpathy M, Shao M, Emerson R, Donner DB, Matei D . (2009). Tissue transglutaminase regulates matrix metalloproteinase-2 in ovarian cancer by modulating cAMP-response element-binding protein activity. J Biol Chem 284: 15390–15399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao M, Cao L, Shen C, Satpathy M, Chelladurai B, Bigsby RM et al. (2009). Epithelial-to-mesenchymal transition and ovarian tumor progression induced by tissue transglutaminase. Cancer Res 69: 9192–9201.

    Article  CAS  PubMed  Google Scholar 

  • Sodek KL, Ringuette MJ, Brown TJ . (2009). Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. Int J Cancer 124: 2060–2070.

    Article  CAS  PubMed  Google Scholar 

  • Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R et al. (2006). Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 103: 11154–11159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiery JP . (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2: 442–454.

    Article  CAS  PubMed  Google Scholar 

  • Thuault S, Valcourt U, Petersen M, Manfioletti G, Heldin CH, Moustakas A . (2006). Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition. J Cell Biol 174: 175–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobin SW, Douville K, Benbow U, Brinckerhoff CE, Memoli VA, Arrick BA . (2002). Consequences of altered TGF-beta expression and responsiveness in breast cancer: evidence for autocrine and paracrine effects. Oncogene 21: 108–118.

    Article  CAS  PubMed  Google Scholar 

  • Vincent T, Neve EP, Johnson JR, Kukalev A, Rojo F, Albanell J et al. (2009). A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol 11: 943–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakahara K, Kobayashi H, Yagyu T, Matsuzaki H, Kondo T, Kurita N et al. (2004). Transforming growth factor-beta1-dependent activation of Smad2/3 and up-regulation of PAI-1 expression is negatively regulated by Src in SKOV-3 human ovarian cancer cells. J Cell Biochem 93: 437–453.

    Article  CAS  PubMed  Google Scholar 

  • Yamada SD, Baldwin RL, Karlan BY . (1999). Ovarian carcinoma cell cultures are resistant to TGF-beta1-mediated growth inhibition despite expression of functional receptors. Gynecol Oncol 75: 72–77.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al. (1995). Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 270: 2008–2011.

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Miyagi C, Fukada T, Kagara N, Che YS, Hirano T . (2004). Zinc transporter LIVI controls epithelial-mesenchymal transition in zebrafish gastrula organizer. Nature 429: 298–302.

    Article  CAS  PubMed  Google Scholar 

  • Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B et al. (1998). Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1: 611–617.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Lesort M, Guttmann RP, Johnson GV . (1998). Modulation of the in situ activity of tissue transglutaminase by calcium and GTP. J Biol Chem 273: 2288–2295.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM et al. (2008). Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68: 4311–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs J Tucholski, H Nakshatri, Y Xu, A Belkin and R Bigsby for reagents and Dr A Belkin for useful discussion. This work was supported by the US Department of Veterans Affairs through a VA Merit Award and by the American Cancer Society through a Research Scholar grant to DM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Matei.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, L., Shao, M., Schilder, J. et al. Tissue transglutaminase links TGF-β, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene 31, 2521–2534 (2012). https://doi.org/10.1038/onc.2011.429

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.429

Keywords

This article is cited by

Search

Quick links