Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation

Abstract

Stress insults intensify fear memory; however, the mechanism(s) facilitating this physiological response is still unclear. Here, we report the molecular, neurophysiological and behavioral findings attributing much of this effect to alternative splicing of the acetylcholinesterase (AChE) gene in hippocampal neurons. As a case study, we explored immobilization-stressed mice with intensified fear memory and enhanced long-term potentiation (LTP), in which alternative splicing was found to induce overproduction of neuronal ‘readthrough’ AChE-R (AChE-R). Selective downregulation of AChE-R mRNA and protein by antisense oligonucleotides abolished the stress-associated increase in AChE-R, the elevation of contextual fear and LTP in the hippocampal CA1 region. Reciprocally, we intrahippocampally injected a synthetic peptide representing the C-terminal sequence unique to AChE-R. The injected peptide, which has been earlier found to exhibit no enzymatic activity, was incorporated into cortical, hippocampal and basal nuclei neurons by endocytosis and retrograde transport and enhanced contextual fear. Compatible with this hypothesis, inherited AChE-R overexpression in transgenic mice resulted in perikaryal clusters enriched with PKCβII, accompanied by PKC-augmented LTP enhancement. Our findings demonstrate a primary role for stress-induced alternative splicing of the AChE gene to elevated contextual fear and synaptic plasticity, and attribute to the AChE-R splice variant a major role in this process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kim JJ, Diamond DM . The stressed hippocampus, synaptic plasticity, lost memories. Nat Rev Neurosci 2002; 3: 453–462.

    Article  CAS  Google Scholar 

  2. McEwen BS . Corticosteroids and hippocampal plasticity. Ann NY Acad Sci 1994; 746: 134–142.

    Article  CAS  Google Scholar 

  3. Wilson MA, McNaughton BL . Dynamics of the hippocampal ensemble code for space. Science 1993; 261: 1055–1058.

    Article  CAS  Google Scholar 

  4. Rolls ET, Stringer SM, Trappenberg TP . A unified model of spatial and episodic memory. Proc R Soc Lond B Biol Sci 2002; 269: 1087–1093.

    Article  Google Scholar 

  5. Huerta PT, Sun LD, Wilson MA, Tonegawa S . Formation of temporal memory requires NMDA receptors within CA1 pyramidal neurons. Neuron 2000; 25: 473–480.

    Article  CAS  Google Scholar 

  6. Phillips RG, LeDoux JE . Lesions of the dorsal hippocampal formation interfere with background but not foreground contextual fear conditioning. Learn. Mem. 1994; 1: 34–44.

    CAS  PubMed  Google Scholar 

  7. Jensen O, Lisman JE . Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J Neurophysiol 2000; 83: 2602–2609.

    Article  CAS  Google Scholar 

  8. Moita MA, Rosis S, Zhou Y, LeDoux JE, Blair HT . Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron 2003; 37: 485–497.

    Article  CAS  Google Scholar 

  9. Barrientos RM, O'Reilly RC, Rudy JW . Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration. Behav Brain Res 2002; 134: 299–306.

    Article  Google Scholar 

  10. Sanders MJ, Wiltgen BJ, Fanselow MS . The place of the hippocampus in fear conditioning. Eur J Pharmacol 2003; 463: 217–223.

    Article  CAS  Google Scholar 

  11. Xu L, Holscher C, Anwyl R, Rowan MJ . Glucocorticoid receptor and protein/RNA synthesis-dependent mechanisms underlie the control of synaptic plasticity by stress. Proc Natl Acad Sci USA 1998; 95: 3204–3208.

    Article  CAS  Google Scholar 

  12. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ . Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 1995; 64: 477–505.

    Article  CAS  Google Scholar 

  13. Kaufer D, Friedman A, Seidman S, Soreq H . Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 1998; 393: 373–377.

    Article  CAS  Google Scholar 

  14. Meshorer E et al. Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science 2002; 295: 508–512.

    Article  CAS  Google Scholar 

  15. Cohen O et al. Overexpression of ‘readthrough’ acetylcholinesterase is associated with antisense suppressible behavioral impairments. Mol Psychiatry 2002; 7: 874–885.

    Article  CAS  Google Scholar 

  16. Birikh K, Sklan E, Shoham S, Soreq H . Interaction of ‘Readthrough’ acetylcholinesterase with RACK1 PKCβII correlates with intensified fear induced conflict behavior. Proc Natl Acad Sci USA 2003; 100: 283–288.

    Article  CAS  Google Scholar 

  17. Soreq H, Seidman S . Acetylcholinesterase–new roles for an old actor. Nat Rev Neurosci 2001; 2: 294–302.

    Article  CAS  Google Scholar 

  18. Blank T, Nijholt I, Eckart K, Spiess J . Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor acute stress: implications for hippocampus-dependent learning. J Neurosci 2002; 22: 3788–3794.

    Article  CAS  Google Scholar 

  19. Franklin KBJ, Paxinos G In: The mouse brain in stereotaxic coordinates. Academic Press: San Diego, 1997.

    Google Scholar 

  20. Nijholt I, Blank T, Ahi J, Spiess J . In vivo CREB phosphorylation mediated by dopamine and NMDA receptor activation in mouse hippocampus and caudate nucleus. Brain Res Gene Expression Patterns 2002; 1: 101–106.

    Article  CAS  Google Scholar 

  21. Sternfeld M et al. Excess ‘read-through’ acetylcholinesterase attenuates but the ‘synaptic’ variant intensifies neurodeterioration correlates. Proc Natl Acad Sci USA 2000; 97: 8647–8652.

    Article  CAS  Google Scholar 

  22. Grisaru D et al. ARP, a peptide derived from the stress-associated acetylcholinesterase variant has hematopoietic growth promoting activities. Mol Med 2001; 7: 93–105.

    Article  CAS  Google Scholar 

  23. Smith MA, Makino S, Kvetnansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15: 1961–1970.

    Article  Google Scholar 

  24. Phillips R, LeDoux JE . Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 1992; 106: 274–285.

    Article  CAS  Google Scholar 

  25. Kandel ER . The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001; 294: 1030–1038.

    Article  CAS  Google Scholar 

  26. Stanton PK . Transient protein kinase C activation primes long-term depression and suppresses long-term potentiation of synaptic transmission in hippocampus. Proc Natl Acad Sci USA 1995; 92: 1724–1728.

    Article  CAS  Google Scholar 

  27. Weg-Remers S, Ponta H, Herrlich P, Konig H . Regulation of alternative pre-mRNA splicing by the ERK MAP-kinase pathway. The EMBO J 2001; 20: 4194–4203.

    Article  CAS  Google Scholar 

  28. Schafe GE, Atkins CM, Swank MW, Bauer EP, Sweatt JD, LeDoux JE . Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning. J Neurosci 2000; 20: 8177–8187.

    Article  CAS  Google Scholar 

  29. Sananbenesi F, Fischer A, Schrick C, Spiess J, Radulovic J . Phosphorylation of hippocampal Erk-1/2, Elk-1, and p90-Rsk-1 during contextual fear conditioning: interactions between Erk-1/2 and Elk-1. Mol Cell Neurosci 2002; 21: 463–476.

    Article  CAS  Google Scholar 

  30. Perrier AI, Massoulie J, Krejci E . PRiMA: the membrane anchor of acetylcholinesterase in the brain. Neuron 2002; 33: 275–285.

    Article  CAS  Google Scholar 

  31. Song JY, Ichtchenko K, Sudhof TC, Brose N . Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 1999; 96: 1100–1105.

    Article  CAS  Google Scholar 

  32. Grifman M, Galyam N, Seidman S, Soreq H . Functional redundancy of acetylcholinesterase and neuroligin in mammalian neuritogenesis. Proc Natl Acad Sci USA 1998; 95: 13935–13940.

    Article  CAS  Google Scholar 

  33. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T . Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 2000; 101: 657–669.

    Article  CAS  Google Scholar 

  34. Ichtchenko K, Hata Y, Nguyen T, Ullrich B, Missler M, Moomaw C, Sudhof TC . Neuroligin-1 a splice site-specific ligand for beta-neurexins. Cell 1995; 81: 435–443.

    Article  CAS  Google Scholar 

  35. Stillman MJ, Shukitt-Hale B, Coffey BP, Levy A, Lieberman HR . In vivo hippocampal acetylcholine release during exposure to acute stress. Stress 1997; 1: 191–200.

    Article  CAS  Google Scholar 

  36. De Kloet ER, Oitzl MS, Joels M . Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci 1999; 22: 422–426.

    Article  CAS  Google Scholar 

  37. Young E, Cesena T, Meiri KF, Perrone-Bizzozero NI . Changes in protein kinase C (PKC) activity, isozyme translocation, and GAP-43 phosphorylation in the rat hippocampal formation after a single-trial contextual fear conditioning paradigm. Hippocampus 2002; 12: 457–464.

    Article  CAS  Google Scholar 

  38. Weeber EJ et al. A role for the beta isoform of protein kinase C in fear conditioning. J Neurosci 2000; 20: 5906–5914.

    Article  CAS  Google Scholar 

  39. Rosen JB, Schulkin J . From normal fear to pathological anxiety. Psychol Rev 1998; 105: 325–350.

    Article  CAS  Google Scholar 

  40. Gorman J, Kent J, Sullivan G, Coplan J . Neuroanatomical hypothesis of panic disorder, revised. Am J Psych 2000; 157: 493–505.

    Article  CAS  Google Scholar 

  41. Bouton ME, Mineka S, Barlow DH . A modern learning theory perspective on the etiology of panic disorder. Psychol Rev 2001; 108: 4–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Michael Gait, Cambridge, UK, for advice and for critically reviewing this manuscript. This study was supported by the Max Planck Society, the Hebrew University of Jerusalem, the Israel Science Foundation (Grant no. 618/02-1 to HS), the US Army Medical Research and Materiel Command (DAMD 17-99-1-9547, to HS) and Ester Neurosciences, Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Blank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nijholt, I., Farchi, N., Kye, M. et al. Stress-induced alternative splicing of acetylcholinesterase results in enhanced fear memory and long-term potentiation. Mol Psychiatry 9, 174–183 (2004). https://doi.org/10.1038/sj.mp.4001446

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001446

Keywords

This article is cited by

Search

Quick links