J Pediatr Genet 2016; 05(04): 198-208
DOI: 10.1055/s-0036-1592421
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Genetic Basis of Nonsyndromic and Syndromic Tooth Agenesis

Xiaoqian Ye
1   Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States
2   School and Hospital of Stomatology, Wuhan University, Wuhan, China
,
Ali B. Attaie
3   Departments of Pediatrics and Dental Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States
› Author Affiliations
Further Information

Publication History

15 September 2015

04 October 2015

Publication Date:
26 September 2016 (online)

Abstract

Human dentition development is a long and complex process which involves a series of reciprocal and sequential interactions between the embryonic stomodeal epithelium and the underlying neural crest–derived mesenchyme. Despite environment disturbances, tooth development is predominantly genetically controlled. To date, more than 200 genes have been identified in tooth development. These genes implied in various signaling pathways such as the bone morphogenetic protein, fibroblast growth factor, sonic hedgehog homolog, ectodysplasin A, wingless-type MMTV integration site family (Wnt), and transform growth factor pathways. Mutations in any of these strictly balanced signaling cascades may cause arrested odontogenesis and/or other dental defects. This article aims to review current knowledge about the genetic mechanisms responsible for selective nonsyndromic tooth agenesis in humans and to present a detailed summary of syndromes with hypodontia as regular features and their causative genes.

 
  • References

  • 1 Peters H, Balling R. Teeth. Where and how to make them. Trends Genet 1999; 15 (2) 59-65
  • 2 Line SRP. Molecular morphogenetic fields in the development of human dentition. J Theor Biol 2001; 211 (1) 67-75
  • 3 Matalova E, Fleischmannova J, Sharpe PT, Tucker AS. Tooth agenesis: from molecular genetics to molecular dentistry. J Dent Res 2008; 87 (7) 617-623
  • 4 Rølling S, Poulsen S. Agenesis of permanent teeth in 8138 Danish schoolchildren: prevalence and intra-oral distribution according to gender. Int J Paediatr Dent 2009; 19 (3) 172-175
  • 5 Vieira AR. Oral clefts and syndromic forms of tooth agenesis as models for genetics of isolated tooth agenesis. J Dent Res 2003; 82 (3) 162-165
  • 6 Maas R, Bei M. The genetic control of early tooth development. Crit Rev Oral Biol Med 1997; 8 (1) 4-39
  • 7 Vastardis H. The genetics of human tooth agenesis: new discoveries for understanding dental anomalies. Am J Orthod Dentofacial Orthop 2000; 117 (6) 650-656
  • 8 Thesleff I. The genetic basis of tooth development and dental defects. Am J Med Genet A 2006; 140 (23) 2530-2535
  • 9 De Coster PJ, Marks LA, Martens LC, Huysseune A. Dental agenesis: genetic and clinical perspectives. J Oral Pathol Med 2009; 38 (1) 1-17
  • 10 Nieminen P. Genetic basis of tooth agenesis. J Exp Zoolog B Mol Dev Evol 2009; 312B (4) 320-342
  • 11 Thomas BL, Sharpe PT. Patterning of the murine dentition by homeobox genes. Eur J Oral Sci 1998; 106 (Suppl. 01) 48-54
  • 12 Lidral AC, Reising BC. The role of MSX1 in human tooth agenesis. J Dent Res 2002; 81 (4) 274-278
  • 13 Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 1994; 6 (4) 348-356
  • 14 van den Boogaard MJ, Dorland M, Beemer FA, van Amstel HK. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat Genet 2000; 24 (4) 342-343
  • 15 Chishti MS, Muhammad D, Haider M, Ahmad W. A novel missense mutation in MSX1 underlies autosomal recessive oligodontia with associated dental anomalies in Pakistani families. J Hum Genet 2006; 51 (10) 872-878
  • 16 Vastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat Genet 1996; 13 (4) 417-421
  • 17 Stockton DW, Das P, Goldenberg M, D'Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nat Genet 2000; 24 (1) 18-19
  • 18 Peters H, Neubüser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev 1998; 12 (17) 2735-2747
  • 19 Kist R, Watson M, Wang X , et al. Reduction of Pax9 gene dosage in an allelic series of mouse mutants causes hypodontia and oligodontia. Hum Mol Genet 2005; 14 (23) 3605-3617
  • 20 Kapadia H, Frazier-Bowers S, Ogawa T, D'Souza RN. Molecular characterization of a novel PAX9 missense mutation causing posterior tooth agenesis. Eur J Hum Genet 2006; 14 (4) 403-409
  • 21 Suda N, Ogawa T, Kojima T, Saito C, Moriyama K. Non-syndromic oligodontia with a novel mutation of PAX9. J Dent Res 2011; 90 (3) 382-386
  • 22 Mostowska A, Kobielak A, Trzeciak WH. Molecular basis of non-syndromic tooth agenesis: mutations of MSX1 and PAX9 reflect their role in patterning human dentition. Eur J Oral Sci 2003; 111 (5) 365-370
  • 23 Ogawa T, Kapadia H, Feng JQ, Raghow R, Peters H, D'Souza RN. Functional consequences of interactions between Pax9 and Msx1 genes in normal and abnormal tooth development. J Biol Chem 2006; 281 (27) 18363-18369
  • 24 Nakatomi M, Wang XP, Key D , et al. Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Dev Biol 2010; 340 (2) 438-449
  • 25 Paixão-Côrtes VR, Braga T, Salzano FM, Mundstock K, Mundstock CA, Bortolini MC. PAX9 and MSX1 transcription factor genes in non-syndromic dental agenesis. Arch Oral Biol 2011; 56 (4) 337-344
  • 26 Zhou J, Gao Y, Zhang Z , et al. Osr2 acts downstream of Pax9 and interacts with both Msx1 and Pax9 to pattern the tooth developmental field. Dev Biol 2011; 353 (2) 344-353
  • 27 Liu W, Dong X, Mai M , et al. Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 2000; 26 (2) 146-147
  • 28 Lammi L, Arte S, Somer M , et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004; 74 (5) 1043-1050
  • 29 Callahan N, Modesto A, Meira R, Seymen F, Patir A, Vieira AR. Axis inhibition protein 2 (AXIN2) polymorphisms and tooth agenesis. Arch Oral Biol 2009; 54 (1) 45-49
  • 30 Marvin ML, Mazzoni SM, Herron CM, Edwards S, Gruber SB, Petty EM. AXIN2-associated autosomal dominant ectodermal dysplasia and neoplastic syndrome. Am J Med Genet A 2011; 155A (4) 898-902
  • 31 Wong S, Liu H, Bai B , et al. Novel missense mutations in the AXIN2 gene associated with non-syndromic oligodontia. Arch Oral Biol 2014; 59 (3) 349-353
  • 32 Kere J, Srivastava AK, Montonen O , et al. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet 1996; 13 (4) 409-416
  • 33 Fan H, Ye X, Shi L , et al. Mutations in the EDA gene are responsible for X-linked hypohidrotic ectodermal dysplasia and hypodontia in Chinese kindreds. Eur J Oral Sci 2008; 116 (5) 412-417
  • 34 van der Hout AH, Oudesluijs GG, Venema A , et al. Mutation screening of the Ectodysplasin-A receptor gene EDAR in hypohidrotic ectodermal dysplasia. Eur J Hum Genet 2008; 16 (6) 673-679
  • 35 Song S, Han D, Qu H , et al. EDA gene mutations underlie non-syndromic oligodontia. J Dent Res 2009; 88 (2) 126-131
  • 36 Adaimy L, Chouery E, Megarbane H , et al. Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. Am J Hum Genet 2007; 81 (4) 821-828
  • 37 Bohring A, Stamm T, Spaich C , et al. WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. Am J Hum Genet 2009; 85 (1) 97-105
  • 38 Kantaputra P, Sripathomsawat W. WNT10A and isolated hypodontia. Am J Med Genet A 2011; 155A (5) 1119-1122
  • 39 van den Boogaard MJ, Créton M, Bronkhorst Y , et al. Mutations in WNT10A are present in more than half of isolated hypodontia cases. J Med Genet 2012; 49 (5) 327-331
  • 40 Plaisancié J, Bailleul-Forestier I, Gaston V , et al. Mutations in WNT10A are frequently involved in oligodontia associated with minor signs of ectodermal dysplasia. Am J Med Genet A 2013; 161A (4) 671-678
  • 41 Arzoo PS, Klar J, Bergendal B, Norderyd J, Dahl N. WNT10A mutations account for ¼ of population-based isolated oligodontia and show phenotypic correlations. Am J Med Genet A 2014; 164A (2) 353-359
  • 42 Dabovic B, Chen Y, Colarossi C , et al. Bone abnormalities in latent TGF-[beta] binding protein (Ltbp)-3-null mice indicate a role for Ltbp-3 in modulating TGF-[beta] bioavailability. J Cell Biol 2002; 156 (2) 227-232
  • 43 Dabovic B, Chen Y, Colarossi C, Zambuto L, Obata H, Rifkin DB. Bone defects in latent TGF-beta binding protein (Ltbp)-3 null mice; a role for Ltbp in TGF-beta presentation. J Endocrinol 2002; 175 (1) 129-141
  • 44 Dabovic B, Levasseur R, Zambuto L, Chen Y, Karsenty G, Rifkin DB. Osteopetrosis-like phenotype in latent TGF-beta binding protein 3 deficient mice. Bone 2005; 37 (1) 25-31
  • 45 Noor A, Windpassinger C, Vitcu I , et al. Oligodontia is caused by mutation in LTBP3, the gene encoding latent TGF-beta binding protein 3. Am J Hum Genet 2009; 84 (4) 519-523
  • 46 Bloch-Zupan A, Jamet X, Etard C , et al. Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet 2011; 89 (6) 773-781
  • 47 Alfawaz S, Fong F, Plagnol V, Wong FS, Fearne J, Kelsell DP. Recessive oligodontia linked to a homozygous loss-of-function mutation in the SMOC2 gene. Arch Oral Biol 2013; 58 (5) 462-466
  • 48 Bergendal B, Klar J, Stecksén-Blicks C, Norderyd J, Dahl N. Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes. Am J Med Genet A 2011; 155A (7) 1616-1622
  • 49 Cluzeau C, Hadj-Rabia S, Jambou M , et al. Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat 2011; 32 (1) 70-72
  • 50 Vieira AR, Meira R, Modesto A, Murray JC. MSX1, PAX9, and TGFA contribute to tooth agenesis in humans. J Dent Res 2004; 83 (9) 723-727
  • 51 Ruf S, Klimas D, Hönemann M, Jabir S. Genetic background of nonsyndromic oligodontia: a systematic review and meta-analysis. J Orofac Orthop 2013; 74 (4) 295-308
  • 52 Chhabra N, Goswami M, Chhabra A. Genetic basis of dental agenesis—molecular genetics patterning clinical dentistry. Med Oral Patol Oral Cir Bucal 2014; 19 (2) e112-e119
  • 53 Ye XQ, Jin HX, Shi LS , et al. Identification of novel mutations of IRF6 gene in Chinese families with Van der Woude syndrome. Int J Mol Med 2005; 16 (5) 851-856
  • 54 Yin W, Ye X, Shi L , et al. TP63 gene mutations in Chinese P63 syndrome patients. J Dent Res 2010; 89 (8) 813-817
  • 55 Sözen MA, Suzuki K, Tolarova MM, Bustos T, Fernández Iglesias JE, Spritz RA. Mutation of PVRL1 is associated with sporadic, non-syndromic cleft lip/palate in northern Venezuela. Nat Genet 2001; 29 (2) 141-142
  • 56 Semina EV, Reiter R, Leysens NJ , et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996; 14 (4) 392-399
  • 57 Ye X, Song G, Fan M , et al. A novel heterozygous deletion in the EVC2 gene causes Weyers acrofacial dysostosis. Hum Genet 2006; 119 (1–2) 199-205
  • 58 Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development 2012; 139 (19) 3487-3497