ALL Metrics
-
Views
-
Downloads
Get PDF
Get XML
Cite
Export
Track
Research Article

Difficult mask ventilation in general surgical population: observation of risk factors and predictors

[version 1; peer review: 2 approved]
PUBLISHED 27 Aug 2014
Author details Author details
OPEN PEER REVIEW
REVIEWER STATUS

Abstract

Background: There are few predictors of difficult mask ventilation and a simple, objective, predictive system to identify patients at risk of difficult mask ventilation does not currently exist. We present a retrospective - subgroup analysis aimed at identifying predictive factors for difficult mask ventilation (DMV) in patients undergoing pre-operative airway assessment before elective surgery at a major teaching hospital.
Methods: Data for this retrospective analysis were derived from a database of airway assessments, management plans, and outcomes that were collected prospectively from August 2008 to May 2010 at a Level 1 academic trauma center. Patients were stratified into two groups based on the difficulty of mask ventilation and the cohorts were analyzed using univariate analysis and stepwise selection method.
Results: A total of 1399 pre-operative assessments were completed with documentation stating that mask ventilation was attempted. Of those 1399, 124 (8.9%) patients were found to be difficult to mask ventilate. A comparison of patients with and without difficult mask ventilation identified seven risk factors for DMV: age, body mass index (BMI), neck circumference, history of difficult intubation, presence of facial hair, perceived short neck and obstructive sleep apnea. Although seven risk factors were identified, no individual subject had more than four risk factors.
Conclusion: The results of this study confirm that in a real world clinical setting, the incidence of DMV is not negligible and suggest the use of a simple bedside predictive score to improve the accuracy of DMV prediction, thereby improving patient safety. Further prospective studies to validate this score would be useful.

Keywords

airway management, preoperative airway assessment, difficult mask ventilation

Introduction

One of the primary responsibilities of an anesthesiologist is to maintain adequate oxygenation and ventilation by maintaining a patent upper airway1. Being able to provide ventilation by bag-mask, in face of a difficult or failed tracheal intubation, can make the difference between serious complications and disability.

In the literature, the incidence of difficult mask ventilation (DMV) varies from 0.08% to 15% depending on the definition used14. Despite its importance, there are few predictors of DMV24 and a simple, objective, predictive score to identify patients at risk of DMV at the bedside does not currently exist.

We present a retrospective-subgroup analysis of patients undergoing preoperative airway assessment before elective surgery5 at a major teaching hospital, to identify predictive factors for DMV and evaluate a composite score value, based on a comprehensive airway assessment and recorded outcomes.

Materials and methods

Data for this retrospective analysis were derived from a database of airway assessments, management plans, and outcomes collected prospectively from August 2008 to May 2010 at a Level 1 academic trauma center (Memorial Hermann Hospital, Texas Medical Center, Houston, TX, USA). The study was sponsored by an educational grant from the Foundation for Anesthesia, Education and Research (FAER), and other educational funds from the Department of Anesthesiology at University of Texas Medical School at Houston. After obtaining IRB approval (HSC-MS-07-0144) all non-obstetric adult patients presenting for elective surgery requiring general anesthesia, were enrolled in this study5.

A total of 91 residents were involved in the data collection process. Residents were randomized into two groups — an experimental group of residents who used a comprehensive airway assessment form in addition to the existing anesthesia record, and a control group, who only used the existing anesthesia record. For the purpose of the present analysis, only the experiment group data were used for a total of 1339 recorded and attempted bag mask ventilations, graded and assigned to a pre-operative airway assessment5.

DMV was defined as difficulty in maintaining a mask seal and obtaining a satisfactory capnography (end-tidal CO2 and tidal volume)6. If mask ventilation was attempted, then its easiness was determined and graded based on a severity score: from easy = 0, oral airway used = 1; to difficult, two handed ventilation = 2, or extraglottic device required = 3. However, the use of neuromuscular blocking agent, type, dosage, time of administration, and rescue was not considered in the analysis.

Descriptive statistics mean ± standard deviation for continuous variables and frequency (percentage) for categorical variables was summarized for all pre-operative patient characteristics. Univariate analysis of comparison between patients with or without DMV was performed using the two sample t-test for continuous variables and the Chi-square test or Fisher exact test for categorical variables. In addition, receiver operating characteristic (ROC) curves were used to assess the discrimination ability of predicting DMV using continuous variables and to determine their best thresholds which maximize the sum of sensitivity and specificity. All dichotomized variables with a p-value <0.10 in univariate analysis were entered into a multivariate logistic regression model. A stepwise selection method was used to identify independent predictors of difficult mask ventilation. The adjusted odds ratios and their 95% confidence intervals (CI) were reported for each independent predictor. The area under a ROC curve or c-statistic was calculated to evaluate the resulting model’s predictive value.

A non-weighted risk score was created by assigning one point to each independent predictor. In addition, a weighted score introduced in Kheterparl et al. (2009) was derived based on the coefficients of independent predictors from the logistic regression model8. The comparison between non-weighted and weighted risk scores was evaluated through c-statistic. All statistical analyses were conducted using SAS 9.3 (SAS Institute, Cary, NC, USA). A p-value <0.05 was considered significant.

Results

A total of 1399 pre-operative assessments were completed with documentation that MV was attempted, an ultimate outcome was graded, and the record was linked to a pre-operative airway assessment. Of 1399 patients, 124 (8.9%) were found to be difficult to mask ventilate (2 and 3, Table 1). Once stratified into two groups based on the difficulty of mask ventilation the cohorts were analyzed.

Table 1. Summary statistics for MVEase.

MVEaseFrequency (percentage)
N=1399
0 = easy752 (53.8)
1 = Oral airway used523 (37.4)
2 = Two handed ventilation118 (8.4)
3 = Extraglottic device
required
6 (0.4)

* Mask ventilation was considered easy for MVEase classes 0 and 1 and difficult for MVEase classes 2 and 3. Local practice patterns often include placement of an oral airway for routine bag mask ventilation.

Based on univariate analysis (Table 2), a total of eight factors were identified with a p-value <0.05: age, gender, BMI, neck circumference, history of difficult intubation, presence of facial hair, perceived short neck and obstructive sleep apnea (OSA, suspected or diagnosed). The thresholds that maximized the sum of sensitivity and specificity were 47 (year) for age, 35 (kg/m2) for BMI, and 40 (cm) for Neck Circumference by analyzing the ROC curve of each continuous risk factor to predict DMV. In addition to these significant factors, an additional variable capturing the absence of dentition (p=0.09) was included in the subsequent analysis. Entering all these nine factors into a multivariate logistic regression model, seven independent risks factors for DMV were identified using stepwise selection: age of 47 year or older, BMI of 35 kg/m2 or greater, and neck circumference of 40 cm or higher, history of difficult intubation, presence of facial hair, perceived short neck, and OSA; p<0.001; (Table 3). The model’s c-statistic is 0.75 (95% CI: 0.71-0.79), demonstrating a good discriminating capacity. The adjusted odds ratios are also presented in Table 3.

Table 2. Preoperative patient characteristics by DMV status.

VariablesDMVp-value
False
(MVEase=0,1)
N=1275
True
(MVEase=2,3)
N=124
Age (year)
   ≥47
46±17
614 (48.2)
49±13
80 (64.5)
0.034
0.001
Male628 (49.3)78 (62.9)0.004
BMI (kg/m2)
   ≥35
29.1±7.2
234 (18.4)
33.2±8.0
46 (37.1)
<0.0001
<0.0001
NeckCirc
   ≥40
39.2±4.8
588(46.1)
42.9±4.7
96 (77.4)
<0.0001
<0.0001
InterIncisors4.7±1.04.8±0.90.204
Thyromental7.9±1.77.9±1.70.769
Sternomental15.3±2.315.3±2.10.757
HxDiffIntub7 (0.6)4 (3.2)0.012
NeckMobGrade
   1
   2,3

1131 (88.7)
144 (11.3)

106 (85.5)
18 (14.5)
0.284
Mallampati
   I, II
   III, IV

1081 (84.8)
194 (15.2)

100 (80.7)
24 (19.4)
0.225
CSpineAbn40 (3.1)7 (5.7)0.183
NoTeeth107 (8.4)16 (12.9)0.090
FacHair126 (9.9)29 (23.4)<0.0001
FacTrauma18 (1.4)0 (0)NR
FullStomach6 (0.5)1 (0.8)0.479
NasalDef5 (0.4)1 (0.8)0.428
NeckTrauma17 (1.3)3 (2.4)0.413
ShortNeck69 (5.4)22 (17.7)<0.0001
ObsSA 198 (15.5)41 (33.1)<0.0001
ResYear
   CA-1, CA-1-2
   CA-2, CA-2-3, CA-3

980 (76.9)
295 (23.1)

92 (74.2)
32 (25.8)
0.503

NR: not reported due to zero cells. Values are reported as mean±SD and frequency (percentage).

Table 3. Seven independent predictors of difficult mask ventilation.

Predictorβ CoefficientStandard
Error
p-valueAdjusted odds ratio
(95% Confidence
Interval)
Age≥470.6770.2050.0011.97 (1.32, 2.94)
BMI≥350.7370.2220.0012.09 (1.35, 3.23)
NeckCirc≥400.9310.239<0.0012.54 (1.59, 4.05)
HxDiffIntub1.5360.6920.0264.65 (1.20, 18.02)
FacHair0.8490.251<0.0012.34 (1.43, 3.83)
Short Neck0.6310.2910.0301.88 (1.06, 3.32)
ObsSA0.5030.2230.0231.65 (1.07, 2.56)

The seven independent risk factors identified were then applied to all cases where DMV was encountered to evaluate a predictive model for DMV. Although seven risks factors were identified, no individual subject had more than four risk factors. As indicated, non-weighted and weighted risk score were created based on these seven risk factors. The model’s c-statistic based on unweighted score is 0.70 (95% CI: 0.66-0.74) (Figure 1). Weighted score did not improve the prediction performance, which model’s c-statistic is 0.70 (95% CI: 0.66-0.75). Therefore, we adopted the simple approach of unweighted risk score for the following analysis. The sensitivity, specificity, likelihood ratios, and predictive values were progressively calculated for patients with different number of risk factors (Table 4). The best cut-off for the number of risk factors was 2, which maximizes Youden’s index16 with sensitivity of 0.65 and specificity of 0.67. Table 5 also shows the distribution frequencies of different number of risk factors and the odds ratio for patients with one, two, or three risk factors relative to a patient with zero risk factors. When compared with zero risk factors, patients with two or more risk factors have an odds ratio of 7.6 (95% CI: 3.4-16.9).

0d67a1de-ed43-4e5d-8a13-6d4e7b10b68a_figure1.gif

Figure 1. A receiver-operating-characteristic (ROC) curve evaluating the sensitivity and specificity of pre-operative independent risk factors for difficult mask ventilation (DMV).

Seven independent predictors for difficult mask ventilation were identified using logistic regression: age of 47 yr or older, BMI of 35 kg/m2 or greater, NeckCirc of 40 or greater, HxDiffIntub, FacHair, short neck and OSA. A risk score for DMV was calculated based on the number of these seven risk factors a patient possessed. The area under the curve was 0.70±0.02.

Table 4. Diagnostic value of the cut-off for number of risk factors in predicting a difficult mask ventilation.

Cut-off for
number of
risk factors
SensitivitySpecificityLikelihood
ratio
positive
Likelihood
ratio
negative
Positive
predictive
value
Negative
predictive
value
10.940.261.270.230.110.98
20.650.671.970.520.160.95
30.190.953.800.850.260.92
40.001.00N/A1.00.000.91

Likelihood ratio positive=Sensitivity/(1-Specificity)

Likelihood ratio negative=(1-Sensitivity)/Specificity

N/A: not applicable

Table 5. Odds ratio of patients with a given risk level (i.e., number of risk factors at 1, 2, 3) to a patient with 0 risk factor.

Number of
risk factors
Total
patients
Patients
with DMV
n (%)
Odds Ratio (95%
Confidence Interval)
03377 (2.1)Referrence
155936 (6.4)3.25 (1.43, 7.38)
241057 (13.9)7.61 (3.42, 16.93)
39324 (25.8)16.40 (6.79, 39.57)

Discussion

For more than three decades, poor airway management was recognized as a serious patient safety concern, emphasizing the need for a careful airway assessment and identifying the predictors for a difficult airway6. Moreover, the airway risk assessment tools in widespread use were mostly focused on one specific aspect of a difficult airway (i.e. difficult laryngoscopy, difficult intubation). In more recent years, this paradigm has shifted to a more functional approach with greater emphasis placed on the overall importance of the airway patency. Indeed, due to early data demonstrating the significant risk of respiratory depression associated with sedation, The Joint Commission and Centers for Medicare and Medicaid Services has implemented policies to ensure evaluation of the risk for a difficult airway prior to procedures. Moreover, the 2013 American Society of Anesthesiology (ASA) Practice Guidelines for Management of the Difficult Airway caution about the risks of a difficult bag-mask ventilation due to upper airway obstruction and recommend an airway risk assessment before every anesthesia procedure is performed7. In this study, we determine that: (1) the reported incidence of DMV was 9%; (2) the reported incidence of DMV in patients with a history of OSA was 17%; (3) seven independent risk factors were identified (age ≥ 47 yr, BMI ≥ 35 kg/m2, neck circumference ≥ 40 cm, history of difficult intubation, presence of facial hair, perceived short neck, history of OSA); (4) the absence of three of these factors allows to reasonably exclude a DMV (likelihood ratio negative: 0.85).

Recent investigations have demonstrated that the incidence and risk factors for DMV are distinct from difficult laryngoscopy (DL) predictors (incidence i.e. ranges from 1.4%8 to 16%9). There are many reasons that can explain these findings: (1) absence of a universally accepted definition of DMV (different definitions lead to different data); (2) obesity and OSA are undoubtedly predictors of DMV, therefore a study done on a population with a high prevalence of obesity will show a higher incidence of DMV from a population with a lower prevalence of obesity; (3) the design of face masks and the technique used are not usually reported, but recent studies highlight their importance for performance and accordingly the reported incidence of DMV10,11; (4) the influence of neuromuscular block on mask ventilation has been demonstrated, but often these data are missing12.

We confirmed many factors such as age, short neck, facial hair, BMI, but most importantly neck circumference, that have been associated with difficult airway in the obese13,14 as well as a history of OSA. Interestingly, neck circumference and BMI are also important determinants for OSA screening, which may results in some overlap between OSA and DMV. Our study confirmed that OSA patients are at risk for DMV, calling for a systematic screening for OSA with the aim to identify a category of patients at risk of not only difficult airway, but also of post-operative complications15.

We attempted, indeed, to define a bedside score to predict DMV: our score has the advantage of including objective variables, such as neck circumference, but has a high false positive rate, possibly limiting the usefulness for a large-scale clinical implementation of the score. However with a sensitivity of 92% (using one risk factor, while it drops at lower values for two or more combined risk factors), this score could actually be useful as screening tool, since avoiding the underestimation of unpredicted DMV is far more important than a false positive (particularly in airway management where there are not significant costs attributed to overestimation).

Our study also has other limitations: first, only DMV outcomes were analyzed without consideration for difficult laryngoscopy; second, a large number of records were selectively removed from our analysis because the outcomes were not known, reducing our statistical power and introducing the possibility of selection bias.

The results of this study confirm that in a real world clinical setting, the incidence of DMV is not negligible and suggest the use of a simple bedside predictive score to improve the accuracy of DMV prediction, thereby improving patient safety. Further prospective studies to validate this score would be useful.

Data availability

Data have been obtained from databases at the Memorial Hermann Hospital, Texas Medical Center, Houston, IRB approval HSC-MS-07-0144. The author can support applications to the Institutional Board to make the data accessible upon individual request.

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 27 Aug 2014
Comment
Author details Author details
Competing interests
Grant information
Copyright
Download
 
Export To
metrics
Views Downloads
F1000Research - -
PubMed Central
Data from PMC are received and updated monthly.
- -
Citations
CITE
how to cite this article
Cattano D, Killoran PV, Cai C et al. Difficult mask ventilation in general surgical population: observation of risk factors and predictors [version 1; peer review: 2 approved] F1000Research 2014, 3:204 (https://doi.org/10.12688/f1000research.5131.1)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
track
receive updates on this article
Track an article to receive email alerts on any updates to this article.

Open Peer Review

Current Reviewer Status: ?
Key to Reviewer Statuses VIEW
ApprovedThe paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approvedFundamental flaws in the paper seriously undermine the findings and conclusions
Version 1
VERSION 1
PUBLISHED 27 Aug 2014
Views
13
Cite
Reviewer Report 17 Oct 2014
Adrian Matioc, University of Wisconsin School of Medicine and Public Health, William S. Middleton Memorial Veterans Medical Center, Madison, WI, USA 
Approved
VIEWS 13
There is today an increasing interest in studying difficult face mask ventilation. Cattano et al. present a retrospective study derived from a database built of elective cases. There are several points I want to make:

First, the study used a “real ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Matioc A. Reviewer Report For: Difficult mask ventilation in general surgical population: observation of risk factors and predictors [version 1; peer review: 2 approved]. F1000Research 2014, 3:204 (https://doi.org/10.5256/f1000research.5471.r6308)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
  • Author Response 17 Oct 2014
    Davide Cattano, Department of Anesthesiology, University of Texas Medical School at Houston, Houston, 77030, USA
    17 Oct 2014
    Author Response
    We are grateful for Dr Matioc comments which endorse our findings while offring an opportunity for further discussion. We do agree with Dr Matioc about the importance of properly monitoring ... Continue reading
COMMENTS ON THIS REPORT
  • Author Response 17 Oct 2014
    Davide Cattano, Department of Anesthesiology, University of Texas Medical School at Houston, Houston, 77030, USA
    17 Oct 2014
    Author Response
    We are grateful for Dr Matioc comments which endorse our findings while offring an opportunity for further discussion. We do agree with Dr Matioc about the importance of properly monitoring ... Continue reading
Views
22
Cite
Reviewer Report 28 Aug 2014
D John Doyle, Department of General Anesthesiology, Cleveland Clinic Main Campus, Cleveland, OH, USA 
Approved
VIEWS 22
This is an important contribution to the difficult airway literature and will be helpful to clinicians wanting a means to predict that mask ventilation may be a problem following the induction of general anesthesia. While the limitations of the study ... Continue reading
CITE
CITE
HOW TO CITE THIS REPORT
Doyle DJ. Reviewer Report For: Difficult mask ventilation in general surgical population: observation of risk factors and predictors [version 1; peer review: 2 approved]. F1000Research 2014, 3:204 (https://doi.org/10.5256/f1000research.5471.r5963)
NOTE: it is important to ensure the information in square brackets after the title is included in all citations of this article.
  • Author Response 28 Aug 2014
    Davide Cattano, Department of Anesthesiology, University of Texas Medical School at Houston, Houston, 77030, USA
    28 Aug 2014
    Author Response
    I am grateful to Dr Doyle for his review, comments and, in particular, for the detailed references.

    Indeed the avoidance of muscle relaxation from the analysis was a major "missed" undertaking, ... Continue reading
COMMENTS ON THIS REPORT
  • Author Response 28 Aug 2014
    Davide Cattano, Department of Anesthesiology, University of Texas Medical School at Houston, Houston, 77030, USA
    28 Aug 2014
    Author Response
    I am grateful to Dr Doyle for his review, comments and, in particular, for the detailed references.

    Indeed the avoidance of muscle relaxation from the analysis was a major "missed" undertaking, ... Continue reading

Comments on this article Comments (0)

Version 1
VERSION 1 PUBLISHED 27 Aug 2014
Comment
Alongside their report, reviewers assign a status to the article:
Approved - the paper is scientifically sound in its current form and only minor, if any, improvements are suggested
Approved with reservations - A number of small changes, sometimes more significant revisions are required to address specific details and improve the papers academic merit.
Not approved - fundamental flaws in the paper seriously undermine the findings and conclusions
Sign In
If you've forgotten your password, please enter your email address below and we'll send you instructions on how to reset your password.

The email address should be the one you originally registered with F1000.

Email address not valid, please try again

You registered with F1000 via Google, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Google account password, please click here.

You registered with F1000 via Facebook, so we cannot reset your password.

To sign in, please click here.

If you still need help with your Facebook account password, please click here.

Code not correct, please try again
Email us for further assistance.
Server error, please try again.