Skip to main content

Main menu

  • Home
  • Content
    • Current
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
  • About Us
    • About the Ochsner Journal
    • Editorial Board
  • More
    • Alerts
    • Feedback
  • Other Publications
    • Ochsner Journal Blog

User menu

  • My alerts
  • Log in

Search

  • Advanced search
Ochsner Journal
  • Other Publications
    • Ochsner Journal Blog
  • My alerts
  • Log in
Ochsner Journal

Advanced Search

  • Home
  • Content
    • Current
    • Ahead of print
    • Archive
  • Info for
    • Authors
    • Reviewers
  • About Us
    • About the Ochsner Journal
    • Editorial Board
  • More
    • Alerts
    • Feedback
Review ArticleReviews and Contemporary Updates

Dietary Glycine Is Rate-Limiting for Glutathione Synthesis and May Have Broad Potential for Health Protection

Mark F. McCarty, James H. O'Keefe and James J. DiNicolantonio
Ochsner Journal March 2018, 18 (1) 81-87;
Mark F. McCarty
1Catalytic Longevity, Carlsbad, CA
BA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James H. O'Keefe
2Department of Cardiology, Mid America Heart Institute, Saint Luke's Health System, Kansas City, MO
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James J. DiNicolantonio
2Department of Cardiology, Mid America Heart Institute, Saint Luke's Health System, Kansas City, MO
PharmD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • References
  • Info & Metrics
  • PDF
Loading

REFERENCES

  1. ↵
    1. Dickinson DA.,
    2. Forman HJ.
    Glutathione in defense and signaling: lessons from a small thiol. Ann N Y Acad Sci. 2002 11; 973: 488- 504. pmid:12485918
    OpenUrlCrossRefPubMedWeb of Science
    1. Shelton MD.,
    2. Chock PB.,
    3. Mieyal JJ.
    Glutaredoxin: role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal. 2005 Mar-Apr; 7 3-4: 348- 366. pmid:15706083
    OpenUrlCrossRefPubMedWeb of Science
  2. ↵
    1. Parsons ZD.,
    2. Gates KS.
    Thiol-dependent recovery of catalytic activity from oxidized protein tyrosine phosphatases. Biochemistry. 2013 9 17; 52 37: 6412- 6423. doi: 10.1021/bi400451m. pmid:23957891
    OpenUrlCrossRefPubMed
  3. ↵
    1. Dröge W.,
    2. Kinscherf R.,
    3. Hildebrandt W.,
    4. Schmitt T.
    The deficit in low molecular weight thiols as a target for antiageing therapy. Curr Drug Targets. 2006 11; 7 11: 1505- 1512. pmid:17100590
    OpenUrlPubMed
  4. ↵
    1. Atkuri KR.,
    2. Mantovani JJ.,
    3. Herzenberg LA.,
    4. Herzenberg LA.
    N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007 8; 7 4: 355- 359. pmid:17602868
    OpenUrlCrossRefPubMedWeb of Science
  5. ↵
    1. Dodd S.,
    2. Dean O.,
    3. Copolov DL.,
    4. Malhi GS.,
    5. Berk M.
    N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther. 2008 12; 8 12: 1955- 1962. doi: 10.1517/14728220802517901. pmid:18990082
    OpenUrlCrossRefPubMed
  6. ↵
    1. Brown TR.,
    2. Drummond ML.,
    3. Barelier S.,
    4. et al.
    Aspartate 458 of human glutathione synthetase is important for cooperativity and active site structure. Biochem Biophys Res Commun. 2011 8 5; 411 3: 536- 542. doi: 10.1016/j.bbrc.2011.06.166. pmid:21771585
    OpenUrlCrossRefPubMed
  7. ↵
    1. Njålsson R.,
    2. Carlsson K.,
    3. Olin B.,
    4. et al.
    Kinetic properties of missense mutations in patients with glutathione synthetase deficiency. Biochem J. 2000 7 1; 349 Pt 1: 275- 279. pmid:10861239
    OpenUrlAbstract/FREE Full Text
  8. ↵
    1. Sekhar RV.,
    2. Patel SG.,
    3. Guthikonda AP.,
    4. et al.
    Deficient synthesis of glutathione underlies oxidative stress in aging and can be corrected by dietary cysteine and glycine supplementation. Am J Clin Nutr. 2011 9; 94 3: 847- 853. doi: 10.3945/ajcn.110.003483. pmid:21795440
    OpenUrlAbstract/FREE Full Text
  9. ↵
    1. Richman PG.,
    2. Meister A.
    Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975 2 25; 250 4: 1422- 1426. pmid:1112810
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Wang W.,
    2. Dai Z.,
    3. Wu Z.,
    4. et al.
    Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids. 2014 8; 46 8: 2037- 2045. doi: 10.1007/s00726-014-1758-3. pmid:24858859
    OpenUrlCrossRefPubMed
    1. Zhang Y.,
    2. Lv SJ.,
    3. Yan H.,
    4. Wang L.,
    5. Liang GP.,
    6. Wan QX.,
    7. Peng X.
    Effects of glycine supplementation on myocardial damage and cardiac function after severe burn. Burns. 2013 6; 39 4: 729- 735. doi: 10.1016/j.burns.2012.09.006. pmid:23036846
    OpenUrlCrossRefPubMed
    1. Senthilkumar R.,
    2. Viswanathan P.,
    3. Nalini N.
    Effect of glycine on oxidative stress in rats with alcohol induced liver injury. Pharmazie. 2004 1; 59 1: 55- 60. pmid:14964423
    OpenUrlPubMedWeb of Science
  11. ↵
    1. Ruiz-Ramírez A.,
    2. Ortiz-Balderas E.,
    3. Cardozo-Saldaña G.,
    4. Diaz-Diaz E.,
    5. El-Hafidi M.
    Glycine restores glutathione and protects against oxidative stress in vascular tissue from sucrose-fed rats. Clin Sci (Lond). 2014 1 1; 126 1: 19- 29. doi: 10.1042/CS20130164. pmid:23742196
    OpenUrlAbstract/FREE Full Text
  12. ↵
    1. Jackson AA.,
    2. Badaloo AV.,
    3. Forrester T.,
    4. Hibbert JM.,
    5. Persaud C.
    Urinary excretion of 5-oxoproline (pyroglutamic aciduria) as an index of glycine insufficiency in normal man. Br J Nutr. 1987 9; 58 2: 207- 214. pmid:3676243
    OpenUrlCrossRefPubMedWeb of Science
  13. ↵
    1. Persaud C.,
    2. Jackson AA.
    5-L-oxoprolinuria and glycine sufficiency. Clin Chem. 1991 9; 37 9: 1660- 1661.
    OpenUrlFREE Full Text
  14. ↵
    1. Jackson AA.,
    2. Persaud C.,
    3. Meakins TS.,
    4. Bundy R.
    Urinary excretion of 5-L-oxoproline (pyroglutamic acid) is increased in normal adults consuming vegetarian or low protein diets. J Nutr. 1996 11; 126 11: 2813- 2822. pmid:8914953
    OpenUrlAbstract/FREE Full Text
  15. ↵
    1. Suh JH.,
    2. Shenvi SV.,
    3. Dixon BM.,
    4. et al.
    Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A. 2004 3 9; 101 10: 3381- 3386. pmid:14985508
    OpenUrlAbstract/FREE Full Text
    1. Ungvari Z.,
    2. Bailey-Downs L.,
    3. Sosnowska D.,
    4. et al.
    Vascular oxidative stress in aging: a homeostatic failure due to dysregulation of NRF2-mediated antioxidant response. Am J Physiol Heart Circ Physiol. 2011 8; 301 2: H363- H372. doi: 10.1152/ajpheart.01134.2010. pmid:21602469
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    1. Shih PH.,
    2. Yen GC.
    Differential expressions of antioxidant status in aging rats: the role of transcriptional factor Nrf2 and MAPK signaling pathway. Biogerontology. 2007 4; 8 2: 71- 80. pmid:16850181
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Levine ME.,
    2. Suarez JA.,
    3. Brandhorst S.,
    4. et al.
    Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014 3 4; 19 3: 407- 417. doi: 10.1016/j.cmet.2014.02.006. pmid:24606898
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. McCarty MF.,
    2. DiNicolantonio JJ.
    An increased need for dietary cysteine in support of glutathione synthesis may underlie the increased risk for mortality associated with low protein intake in the elderly. Age (Dordr). 2015 10; 37 5: 96 doi: 10.1007/s11357-015-9823-8. pmid:26362762
    OpenUrlCrossRefPubMed
  19. ↵
    1. Meléndez-Hevia E.,
    2. De Paz-Lugo P.,
    3. Cornish-Bowden A.,
    4. Cárdenas ML.
    A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. J Biosci. 2009 12; 34 6: 853- 872. pmid:20093739
    OpenUrlCrossRefPubMed
  20. ↵
    1. Yamashina S.,
    2. Konno A.,
    3. Wheeler MD.,
    4. et al.
    Endothelial cells contain a glycine-gated chloride channel. Nutr Cancer. 2001; 40 2: 197- 204. pmid:11962256
    OpenUrlCrossRefPubMedWeb of Science
  21. ↵
    1. Froh M.,
    2. Thurman RG.,
    3. Wheeler MD.
    Molecular evidence for a glycine-gated chloride channel in macrophages and leukocytes. Am J Physiol Gastrointest Liver Physiol. 2002 10; 283 4: G856- G863. pmid:12223345
    OpenUrlCrossRefPubMed
  22. ↵
    1. Schemmer P.,
    2. Zhong Z.,
    3. Galli U.,
    4. et al.
    Glycine reduces platelet aggregation. Amino Acids. 2013 3; 44 3: 925- 931. doi: 10.1007/s00726-012-1422-8. pmid:23135224
    OpenUrlCrossRefPubMed
  23. ↵
    1. Wang HD.,
    2. Lü XX.,
    3. Lu DX.,
    4. Qi RB.,
    5. Wang YP.,
    6. Fu YM.,
    7. Wang LW.
    Glycine inhibits the LPS-induced increase in cytosolic Ca2+ concentration and TNFalpha production in cardiomyocytes by activating a glycine receptor. Acta Pharmacol Sin. 2009 8; 30 8: 1107- 1114. doi: 10.1038/aps.2009.106. pmid:19617896
    OpenUrlCrossRefPubMed
  24. ↵
    1. Gameiro A.,
    2. Reimann F.,
    3. Habib AM.,
    4. et al.
    The neurotransmitters glycine and GABA stimulate glucagon-like peptide-1 release from the GLUTag cell line. J Physiol. 2005 12 15; 569 Pt 3: 761- 772. pmid:16223757
    OpenUrlCrossRefPubMedWeb of Science
  25. ↵
    1. Lynch JW.
    Molecular structure and function of the glycine receptor chloride channel. Physiol Rev. 2004 10; 84 4: 1051- 1095. pmid:15383648
    OpenUrlCrossRefPubMedWeb of Science
  26. ↵
    1. McCarty MF.,
    2. Barroso-Aranda J.,
    3. Contreras F.
    The hyperpolarizing impact of glycine on endothelial cells may be anti-atherogenic. Med Hypotheses. 2009 8; 73 2: 263- 264. doi: 10.1016/j.mehy.2008.12.021. pmid:19232835
    OpenUrlCrossRefPubMed
  27. ↵
    1. Mayer ML.,
    2. Vyklicky L Jr.,
    3. Clements J.
    Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature. 1989 3 30; 338 6214: 425- 427. pmid:2538755
    OpenUrlCrossRefPubMedWeb of Science
  28. ↵
    1. Hirai H.,
    2. Kirsch J.,
    3. Laube B.,
    4. Betz H.,
    5. Kuhse J.
    The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc Natl Acad Sci U S A. 1996 6 11; 93 12: 6031- 6036. pmid:8650214
    OpenUrlAbstract/FREE Full Text
  29. ↵
    1. Ramakrishnan S.,
    2. Sulochana KN.
    Decrease in glycation of lens proteins by lysine and glycine by scavenging of glucose and possible mitigation of cataractogenesis. Exp Eye Res. 1993 11; 57 5: 623- 628. pmid:8282049
    OpenUrlCrossRefPubMed
  30. ↵
    1. Ramakrishnan S.,
    2. Sulochana KN.,
    3. Punitham R.
    Free lysine, glycine, alanine, glutamic acid and aspartic acid reduce the glycation of human lens proteins by galactose. Indian J Biochem Biophys. 1997 12; 34 6: 518- 523. pmid:9594433
    OpenUrlPubMedWeb of Science
  31. ↵
    1. Xue HH.,
    2. Fujie M.,
    3. Sakaguchi T.,
    4. et al.
    Flux of the L-serine metabolism in rat liver. The predominant contribution of serine dehydratase. J Biol Chem. 1999 6 4; 274 23: 16020- 16027. pmid:10347151
    OpenUrlAbstract/FREE Full Text
    1. Lee HH.,
    2. Kim DJ.,
    3. Ahn HJ.,
    4. Ha JY.,
    5. Suh SW.
    Crystal structure of T-protein of the glycine cleavage system: cofactor binding, insights into H-protein recognition, and molecular basis for understanding nonketotic hyperglycinemia. J Biol Chem. 2004 11 26; 279 48: 50514- 50523. pmid:15355973
    OpenUrlAbstract/FREE Full Text
    1. Szebenyi DM.,
    2. Musayev FN.,
    3. di Salvo ML.,
    4. Safo MK.,
    5. Schirch V.
    Serine hydroxymethyltransferase: role of glu75 and evidence that serine is cleaved by a retroaldol mechanism. Biochemistry. 2004 6 8; 43 22: 6865- 6876. pmid:15170323
    OpenUrlCrossRefPubMedWeb of Science
    1. Ogawa H.,
    2. Fujioka M.,
    3. Su Y.,
    4. Kanamoto R.,
    5. Pitot HC.
    Nutritional regulation and tissue-specific expression of the serine dehydratase gene in rat. J Biol Chem. 1991 10 25; 266 30: 20412- 20417. pmid:1939096
    OpenUrlAbstract/FREE Full Text
  32. ↵
    1. Lopalco A.,
    2. Stella VJ.
    Effect of molecular structure on the relative hydrogen peroxide scavenging ability of some α-keto carboxylic acids. J Pharm Sci. 2016 9; 105 9: 2879- 2885. doi: 10.1016/j.xphs.2016.03.041. pmid:27209460
    OpenUrlCrossRefPubMed
  33. ↵
    1. El Hafidi M.,
    2. Pérez I.,
    3. Zamora J.,
    4. Soto V.,
    5. Carvajal-Sandoval G.,
    6. Baños G.
    Glycine intake decreases plasma free fatty acids, adipose cell size, and blood pressure in sucrose-fed rats. Am J Physiol Regul Integr Comp Physiol. 2004 12; 287 6: R1387- R1393. pmid:15331379
    OpenUrlCrossRefPubMedWeb of Science
  34. ↵
    1. McCarty MF.,
    2. DiNicolantonio JJ.
    The cardiometabolic benefits of glycine: is glycine an ‘antidote' to dietary fructose? Open Heart. 2014 5 28; 1 1: e000103 doi: 10.1136/openhrt-2014-000103. pmid:25332814
    OpenUrlFREE Full Text
  35. ↵
    1. Karamanlis A.,
    2. Chaikomin R.,
    3. Doran S.,
    4. et al.
    Effects of protein on glycemic and incretin responses and gastric emptying after oral glucose in healthy subjects. Am J Clin Nutr. 2007 11; 86 5: 1364- 1368. pmid:17991647
    OpenUrlAbstract/FREE Full Text
  36. ↵
    1. Rubio IG.,
    2. Castro G.,
    3. Zanini AC.,
    4. Medeiros-Neto G.
    Oral ingestion of a hydrolyzed gelatin meal in subjects with normal weight and in obese patients: postprandial effect on circulating gut peptides, glucose and insulin. Eat Weight Disord. 2008 3; 13 1: 48- 53. pmid:18319637
    OpenUrlCrossRefPubMed
  37. ↵
    1. Gannon MC.,
    2. Nuttall JA.,
    3. Nuttall FQ.
    The metabolic response to ingested glycine. Am J Clin Nutr. 2002 12; 76 6: 1302- 1307. pmid:12450897
    OpenUrlAbstract/FREE Full Text
  38. ↵
    1. Díaz-Flores M.,
    2. Cruz M.,
    3. Duran-Reyes G.,
    4. et al.
    Oral supplementation with glycine reduces oxidative stress in patients with metabolic syndrome, improving their systolic blood pressure. Can J Physiol Pharmacol. 2013 10; 91 10: 855- 860. doi: 10.1139/cjpp-2012-0341. pmid:24144057
    OpenUrlCrossRefPubMed
  39. ↵
    Carvajal Sandoval G, Medina Santillán R, Juárez E, Ramos Martínez G, Carvajal Juárez ME. Effect of glycine on hemoglobin glycation in diabetic patients. Proc West Pharmacol Soc. 1999; 42: 31- 32. pmid:10697680
    OpenUrlPubMed
  40. ↵
    Carvajal Sandoval G, Juárez E, Ramos Martínez G, Carvajal Juárez ME, Medina-Santillán R. Inhibition of hemoglobin glycation with glycine in induced diabetes mellitus in rats. Proc West Pharmacol Soc. 1999; 42: 35- 36. pmid:10697682
    OpenUrlPubMed
  41. ↵
    1. Alvarado-Vásquez N.,
    2. Zamudio P.,
    3. Cerón E.,
    4. Vanda B.,
    5. Zenteno E.,
    6. Carvajal-Sandoval G.
    Effect of glycine in streptozotocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol. 2003 4; 134 4: 521- 527. pmid:12727302
    OpenUrlPubMed
    1. Alvarado-Vásquez N.,
    2. Lascurain R.,
    3. et al.
    Oral glycine administration attenuates diabetic complications in streptozotocin-induced diabetic rats. Life Sci. 2006 6 13; 79 3: 225- 232. pmid:16483611
    OpenUrlCrossRefPubMed
  42. ↵
    1. Bahmani F.,
    2. Bathaie SZ.,
    3. Aldavood SJ.,
    4. Ghahghaei A.
    Glycine therapy inhibits the progression of cataract in streptozotocin-induced diabetic rats. Mol Vis. 2012; 18: 439- 448. pmid:22355255
    OpenUrlPubMed
  43. ↵
    1. Wheeler M.,
    2. Stachlewitz RF.,
    3. Yamashina S.,
    4. Ikejima K.,
    5. Morrow AL.,
    6. Thurman RG.
    Glycine-gated chloride channels in neutrophils attenuate calcium influx and superoxide production. FASEB J. 2000 3; 14 3: 476- 484. pmid:10698962
    OpenUrlPubMedWeb of Science
  44. ↵
    1. Wheeler MD.,
    2. Thurman RG.
    Production of superoxide and TNF-alpha from alveolar macrophages is blunted by glycine. Am J Physiol. 1999 11; 277 5 Pt 1: L952- L959. pmid:10564180
    OpenUrlPubMed
  45. ↵
    1. Yin M.,
    2. Ikejima K.,
    3. Arteel GE.,
    4. et al.
    Glycine accelerates recovery from alcohol-induced liver injury. J Pharmacol Exp Ther. 1998 8; 286 2: 1014- 1019. pmid:9694963
    OpenUrlAbstract/FREE Full Text
    1. Wheeler MD.,
    2. Ikejema K.,
    3. Enomoto N.,
    4. et al.
    Glycine: a new anti-inflammatory immunonutrient. Cell Mol Life Sci. 1999 11 30; 56 9-10: 843- 856. pmid:11212343
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamashina S.,
    2. Ikejima K.,
    3. Enomoto N.,
    4. Takei Y.,
    5. Sato N.
    Glycine as a therapeutic immuno-nutrient for alcoholic liver disease. Alcohol Clin Exp Res. 2005 11; 29 11 Suppl: 162S- 165S. pmid:16344603
    OpenUrlCrossRefPubMed
  46. ↵
    1. Bruns H.,
    2. Watanpour I.,
    3. Gebhard MM.,
    4. et al.
    Glycine and taurine equally prevent fatty livers from Kupffer cell-dependent injury: an in vivo microscopy study. Microcirculation. 2011 4; 18 3: 205- 213. doi: 10.1111/j.1549-8719.2010.00078.x. pmid:21175929
    OpenUrlCrossRefPubMed
  47. ↵
    1. Zhou X.,
    2. Han D.,
    3. Xu R.,
    4. et al.
    Glycine protects against high sucrose and high fat-induced non-alcoholic steatohepatitis in rats. Oncotarget. 2016 12 6; 7 49: 80223- 80237. doi: 10.18632/oncotarget.12831. pmid:27784003
    OpenUrlCrossRefPubMed
    1. Barakat HA.,
    2. Hamza AH.
    Glycine alleviates liver injury induced by deficiency in methionine and or choline in rats. Eur Rev Med Pharmacol Sci. 2012 6; 16 6: 728- 736. pmid:22913202
    OpenUrlPubMed
  48. ↵
    1. Dou ZF.,
    2. Guo YR.,
    3. Liu JC.,
    4. et al.
    Ameliorative effects of glycine in an experimental nonalcoholic steatohepatitis and its correlation between TREM-1 and TREM-2. Am J Transl Res. 2016 2 15; 8 2: 284- 297. pmid:27158326
    OpenUrlPubMed
  49. ↵
    1. Li X.,
    2. Bradford BU.,
    3. Wheeler MD.,
    4. et al.
    Dietary glycine prevents peptidoglycan polysaccharide-induced reactive arthritis in the rat: role for glycine-gated chloride channel. Infect Immun. 2001 9; 69 9: 5883- 5891. pmid:11500467
    OpenUrlAbstract/FREE Full Text
  50. ↵
    1. Hartog A.,
    2. Leenders I.,
    3. van der Kraan PM.,
    4. Garssen J.
    Anti-inflammatory effects of orally ingested lactoferrin and glycine in different zymosan-induced inflammation models: evidence for synergistic activity. Int Immunopharmacol. 2007 12 15; 7 13: 1784- 1792. pmid:17996689
    OpenUrlCrossRefPubMed
  51. ↵
    1. Mastbergen SC.,
    2. Frost-Christensen LN.,
    3. Hartog A.,
    4. DeGroot J.,
    5. Hazewinkel HA.,
    6. Lafeber FP.
    Oral glycine in treatment of canine experimental osteoarthritis. Osteoarthritis and Cartilage. 2007 12; 15: C224- C225.
    OpenUrl
  52. ↵
    1. Lückhoff A.,
    2. Busse R.
    Activators of potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents. Naunyn Schmiedebergs Arch Pharmacol. 1990 7; 342 1: 94- 99. pmid:1698266
    OpenUrlPubMedWeb of Science
  53. ↵
    1. Wang W.,
    2. Ha CH.,
    3. Jhun BS.,
    4. Wong C.,
    5. Jain MK.,
    6. Jin ZG.
    Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood. 2010 4 8; 115 14: 2971- 2979. doi: 10.1182/blood-2009-05-224824. pmid:20042720
    OpenUrlAbstract/FREE Full Text
  54. ↵
    1. Liu G.,
    2. Han J.,
    3. Profirovic J.,
    4. Strekalova E.,
    5. Voyno-Yasenetskaya TA.
    Galpha13 regulates MEF2-dependent gene transcription in endothelial cells: role in angiogenesis. Angiogenesis. 2009; 12 1: 1- 15. doi: 10.1007/s10456-008-9123-3. pmid:19093215
    OpenUrlCrossRefPubMed
  55. ↵
    1. Sohn HY.,
    2. Keller M.,
    3. Gloe T.,
    4. Morawietz H.,
    5. Rueckschloss U.,
    6. Pohl U.
    The small G-protein Rac mediates depolarization-induced superoxide formation in human endothelial cells. J Biol Chem. 2000 6 23; 275 25: 18745- 18750. pmid:10764736
    OpenUrlAbstract/FREE Full Text
    1. Zhang Q.,
    2. Matsuzaki I.,
    3. Chatterjee S.,
    4. Fisher AB.
    Activation of endothelial NADPH oxidase during normoxic lung ischemia is KATP channel dependent. Am J Physiol Lung Cell Mol Physiol. 2005 12; 289 6: L954- L961. pmid:16280460
    OpenUrlCrossRefPubMedWeb of Science
  56. ↵
    1. McCabe RD.,
    2. Bakarich MA.,
    3. Srivastava K.,
    4. Young DB.
    Potassium inhibits free radical formation. Hypertension. 1994 7; 24 1: 77- 82. pmid:8021011
    OpenUrlCrossRefPubMed
  57. ↵
    1. Gómez-Zamudio JH.,
    2. García-Macedo R.,
    3. Lázaro-Suárez M.,
    4. Ibarra-Barajas M.,
    5. Kumate J.,
    6. Cruz M.
    Vascular endothelial function is improved by oral glycine treatment in aged rats. Can J Physiol Pharmacol. 2015 6; 93 6: 465- 473. doi: 10.1139/cjpp-2014-0393. pmid:25988540
    OpenUrlCrossRefPubMed
  58. ↵
    1. Ding Y.,
    2. Svingen GF.,
    3. Pedersen ER.,
    4. et al.
    Plasma glycine and risk of acute myocardial infarction in patients with suspected stable angina pectoris. J Am Heart Assoc. 2015 12 31; 5 1 doi: 10.1161/JAHA.115.002621.
  59. ↵
    1. Lu Y.,
    2. Zhu X.,
    3. Li J.,
    4. et al.
    Glycine prevents pressure overload induced cardiac hypertrophy mediated by glycine receptor. Biochem Pharmacol. 2017 1 1; 123: 40- 51. doi: 10.1016/j.bcp.2016.11.008. pmid:27836671
    OpenUrlCrossRefPubMed
  60. ↵
    1. Rose ML.,
    2. Madren J.,
    3. Bunzendahl H.,
    4. Thurman RG.
    Dietary glycine inhibits the growth of B16 melanoma tumors in mice. Carcinogenesis. 1999 5; 20 5: 793- 798. pmid:10334195
    OpenUrlCrossRefPubMedWeb of Science
  61. ↵
    1. Amin K.,
    2. Li J.,
    3. Chao WR.,
    4. Dewhirst MW.,
    5. Haroon ZA.
    Dietary glycine inhibits angiogenesis during wound healing and tumor growth. Cancer Biol Ther. 2003 Mar-Apr; 2 2: 173- 178. pmid:12750558
    OpenUrlPubMedWeb of Science
  62. ↵
    1. Bruns H.,
    2. Kazanavicius D.,
    3. Schultze D.,
    4. et al.
    Glycine inhibits angiogenesis in colorectal cancer: role of endothelial cells. Amino Acids. 2016 11; 48 11: 2549- 2558. pmid:27351202
    OpenUrlPubMed
  63. ↵
    1. Abid MR.,
    2. Kachra Z.,
    3. Spokes KC.,
    4. Aird WC.
    NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Lett. 2000 12 15; 486 3: 252- 256. pmid:11119713
    OpenUrlCrossRefPubMedWeb of Science
  64. ↵
    1. Ushio-Fukai M.
    Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res. 2006 7 15; 71 2: 226- 235. pmid:16781692
    OpenUrlCrossRefPubMedWeb of Science
  65. ↵
    1. Bruns H.,
    2. Petrulionis M.,
    3. Schultze D.,
    4. et al.
    Glycine inhibits angiogenic signaling in human hepatocellular carcinoma cells. Amino Acids. 2014 4; 46 4: 969- 976. doi: 10.1007/s00726-013-1662-2. pmid:24390398
    OpenUrlCrossRefPubMed
  66. ↵
    1. Ham DJ.,
    2. Murphy KT.,
    3. Chee A.,
    4. Lynch GS.,
    5. Koopman R.
    Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia. Clin Nutr. 2014 6; 33 3: 448- 458. doi: 10.1016/j.clnu.2013.06.013. pmid:23835111
    OpenUrlCrossRefPubMed
  67. ↵
    1. Kim MH.,
    2. Kim HM.,
    3. Jeong HJ.
    Estrogen-like osteoprotective effects of glycine in in vitro and in vivo models of menopause. Amino Acids. 2016 3; 48 3: 791- 800. doi: 10.1007/s00726-015-2127-6. pmid:26563333
    OpenUrlCrossRefPubMed
  68. ↵
    1. Jennings A.,
    2. MacGregor A.,
    3. Spector T.,
    4. Cassidy A.
    Amino acid intakes are associated with bone mineral density and prevalence of low bone mass in women: evidence from discordant monozygotic twins. J Bone Miner Res. 2016 2; 31 2: 326- 335. doi: 10.1002/jbmr.2703. pmid:26334651
    OpenUrlCrossRefPubMed
  69. ↵
    1. Vieira CP.,
    2. De Oliveira LP.,
    3. Da Ré Guerra F.,
    4. et al.
    Glycine improves biochemical and biomechanical properties following inflammation of the achilles tendon. Anat Rec (Hoboken). 2015 3; 298 3: 538- 545. doi: 10.1002/ar.23041. pmid:25156668
    OpenUrlCrossRefPubMed
    1. Vieira CP.
    Guerra Fda R, de Oliveira LP, Almeida MS, Marcondes MC, Pimentell ER. Green tea and glycine aid in the recovery of tendinitis of the Achilles tendon of rats. Connect Tissue Res. 2015 2; 56 1: 50- 58. doi: 10.3109/03008207.2014.983270. pmid:25360832
    OpenUrlCrossRefPubMed
  70. ↵
    1. Vieira CP.,
    2. De Oliveira LP.
    Da Ré Guerra F, Marcondes MC, Pimentel ER. Green tea and glycine modulate the activity of metalloproteinases and collagen in the tendinitis of the myotendinous junction of the Achilles tendon. Anat Rec (Hoboken). 2016 7; 299 7: 918- 928. doi: 10.1002/ar.23361. pmid:27121758
    OpenUrlCrossRefPubMed
  71. ↵
    1. Bannai M.,
    2. Kawai N.
    New therapeutic strategy for amino acid medicine: glycine improves the quality of sleep. J Pharmacol Sci. 2012; 118 2: 145- 148. pmid:22293292
    OpenUrlPubMed
  72. ↵
    1. Bannai M.,
    2. Kawai N.,
    3. Ono K.,
    4. Nakahara K.,
    5. Murakami N.
    The effects of glycine on subjective daytime performance in partially sleep-restricted healthy volunteers. Front Neurol. 2012 4 18; 3: 61 doi: 10.3389/fneur.2012.00061. pmid:22529837
    OpenUrlCrossRefPubMed
  73. ↵
    1. Kawai N.,
    2. Sakai N.,
    3. Okuro M.,
    4. et al.
    The sleep-promoting and hypothermic effects of glycine are mediated by NMDA receptors in the suprachiasmatic nucleus. Neuropsychopharmacology. 2015 5; 40 6: 1405- 1416. doi: 10.1038/npp.2014.326. pmid:25533534
    OpenUrlCrossRefPubMed
  74. ↵
    1. Heresco-Levy U.,
    2. Silipo G.,
    3. Javitt DC.
    Glycinergic augmentation of NMDA receptor-mediated neurotransmission in the treatment of schizophrenia. Psychopharmacol Bull. 1996; 32 4: 731- 740. pmid:8993096
    OpenUrlPubMedWeb of Science
  75. ↵
    1. Tsai G.,
    2. Yang P.,
    3. Chung LC.,
    4. Lange N.,
    5. Coyle JT.
    D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 1998 12 1; 44 11: 1081- 1089. pmid:9836012
    OpenUrlCrossRefPubMedWeb of Science
  76. ↵
    1. Heresco-Levy U.,
    2. Javitt DC.,
    3. Ermilov M.,
    4. Mordel C.,
    5. Silipo G.,
    6. Lichtenstein M.
    Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry. 1999 1; 56 1: 29- 36. pmid:9892253
    OpenUrlCrossRefPubMedWeb of Science
PreviousNext
Back to top

In this issue

Ochsner Journal
Vol. 18, Issue 1
Mar 2018
  • Table of Contents
  • Index by author
Print
Download PDF
Email Article

Thank you for your interest in spreading the word on Ochsner Journal.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dietary Glycine Is Rate-Limiting for Glutathione Synthesis and May Have Broad Potential for Health Protection
(Your Name) has sent you a message from Ochsner Journal
(Your Name) thought you would like to see the Ochsner Journal web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Dietary Glycine Is Rate-Limiting for Glutathione Synthesis and May Have Broad Potential for Health Protection
Mark F. McCarty, James H. O'Keefe, James J. DiNicolantonio
Ochsner Journal Mar 2018, 18 (1) 81-87;

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Dietary Glycine Is Rate-Limiting for Glutathione Synthesis and May Have Broad Potential for Health Protection
Mark F. McCarty, James H. O'Keefe, James J. DiNicolantonio
Ochsner Journal Mar 2018, 18 (1) 81-87;
del.icio.us logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • INTRODUCTION
    • METHODS
    • DIETARY GLYCINE REGULATION OF GLUTATHIONE SYNTHESIS
    • HEALTH-PROTECTIVE POTENTIAL OF SUPPLEMENTAL GLYCINE
    • GLYCINE AND METABOLIC SYNDROME
    • ANTIINFLAMMATORY EFFECTS OF GLYCINE
    • GLYCINE AND VASCULAR HEALTH
    • IMPACTS ON CANCER, CONNECTIVE TISSUE, AND THE CENTRAL NERVOUS SYSTEM
    • GLYCINE AS A SUPPLEMENTAL NUTRIENT
    • CONCLUSION
    • ACKNOWLEDGMENTS
    • REFERENCES
  • Figures & Data
  • References
  • Info & Metrics
  • PDF

Cited By...

  • Thrombotic complications of COVID-19 may reflect an upregulation of endothelial tissue factor expression that is contingent on activation of endosomal NADPH oxidase
  • Google Scholar

More in this TOC Section

  • Beta-Blocker Usage in Patients With Heart Failure With Reduced Ejection Fraction During Acute Decompensated Heart Failure Hospitalizations
  • Impact of Coffee Consumption on Cardiovascular Health
  • Brief History of Opioids in Perioperative and Periprocedural Medicine to Inform the Future
Show more REVIEWS AND CONTEMPORARY UPDATES

Similar Articles

Keywords

  • Acetylcysteine
  • chloride channels
  • glucagon
  • glucagon-like peptide 1
  • glutathione
  • glutathione synthase
  • glycine

Ochsner Journal Blog

Current Post

Be Careful Where You Publish -- Part 2

Our Content

  • Home
  • Current Issue
  • Ahead of Print
  • Archive
  • Featured Contributors
  • Ochsner Journal Blog
  • Archive at PubMed Central

Information & Forms

  • Instructions for Authors
  • Instructions for Reviewers
  • Submission Checklist
  • FAQ
  • License for Publishing-Author Attestation
  • Patient Consent Form
  • Submit a Manuscript

Services & Contacts

  • Permissions
  • Sign up for our electronic table of contents
  • Feedback Form
  • Contact Us

About Us

  • Editorial Board
  • About the Ochsner Journal
  • Ochsner Health
  • University of Queensland-Ochsner Clinical School
  • Alliance of Independent Academic Medical Centers

© 2025 Ochsner Clinic Foundation

Powered by HighWire