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Background: Renal cell carcinomas (RCCs) are the most common primary renal tumor. RCCs have a high rate of metastasis and
have the highest mortality rate of all genitourinary cancers. They are often diagnosed late when metastases have developed, and
thesemetastases are difficult to treat successfully. Since 2006, the standard first-line treatment for patientswithmetastatic RCC has
beenmultitargeted tyrosine kinase inhibitors (TKIs) that includemammalian target of rapamycin (mTOR) inhibitors. RCCs are highly
vascularized tumors, and their angiogenesis is controlled by tyrosine kinases that play a vital role in growth factor signaling to
stimulate this process. TKI therapywas introduced fordirect targetingof angiogenesis inRCC. TKIs havebeenmoderately successful
in the treatment of metastatic RCC and initially increased cancer-specific survival times. However, RCC rapidly becomes resistant
to TKIs, and no current drug has produced a cure for advanced RCC.
Methods:We provide an overview of RCC, explain some reasons for therapy resistance in RCC, and describe some therapies that
may overcome resistance to TKIs. The key pathways that determine therapy resistance are illustrated.
Results: Factors involved in the development and progression of RCC include genetic mutations, activation of hypoxia-inducible
factor and related proteins, cellular metabolism, the tumor microenvironment, and growth factors and their receptors. Resistance
to the therapeutic potential of TKIs can be acquired or intrinsic. Alternative therapies include other small molecule drugs and
immunotherapy based on immune checkpoint blockade.
Conclusion: The treatment of RCC is undergoing a paradigm shift from sole use of small molecule antiangiogenesis TKIs as first-
line therapy to include newly approved agents for second-line and third-line therapy that now involve the mTOR pathway and
immune checkpoint blockade drugs for patients with advanced RCC.
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INTRODUCTION
Renal cell carcinomas (RCCs) are the most common kid-

ney neoplasms and the ninth most common malignancy
worldwide, representing 2%-4% of all types of cancers.1

For primary kidney neoplasms, surgical ablation is the stan-
dard management, usually via radical or partial nephrec-
tomy. Although these procedures successfully remove the
primary neoplasm, the reduced kidney mass is associated
with significant risk of adverse functional outcomes, such
as chronic kidney disease. One of the main problems for
detection of a kidney cancer is that the primary lesion is
often masked by functional compensation of the healthy
kidney. Many patients with RCC are diagnosed late when
metastases have developed. These metastases are diffi-
cult to treat. Until the mid-2000s, cytokine-based therapy

(interleukin-2 [IL-2] and interferon alpha [IFN-α]), which had
an approximately 10% response rate, was the standard of
care for metastatic RCC.2-4 Since 2006, targeted therapeu-
tics have replaced cytokine therapy and include tyrosine
kinase inhibitors (TKIs) (sunitinib, sorafenib, pazopanib, and
axitinib), mammalian target of rapamycin (mTOR) inhibitors
(everolimus and temsirolimus), and angiogenesis/vascular
endothelial growth factor (VEGF) inhibitors (bevacizumab).2-5

These therapies have been moderately successful in the
treatment of metastatic RCC, but a significant problem for
patients with RCC is the development of resistance to can-
cer therapy.

Most resistance mechanisms are biologically mediated,
such as by alteration of the target gene itself or by
activation of bypass pathways.5 Pharmacologic resistance

138 Ochsner Journal

mailto:g.gobe@uq.edu.au


Kamli, H

mechanisms involve poor penetration of the drug or activa-
tion of cellular pumps that drive the drug from the cell. Some
mechanisms of resistance involve phenotypic transforma-
tions such as epithelial-mesenchymal transition (EMT).6 In
this review, we provide an overview of RCC, explain some
reasons for therapy resistance in RCC, and describe some
therapies that may overcome resistance to TKIs.

RENAL CELL CARCINOMA
RCC is a dangerous cancer with significant mortality. The

highest rates of kidney cancer incidence (in 2012, 338,000
new cases, 2.4% of the world total) were estimated in North
America, Australia/New Zealand, and Europe, where rates
were >10 per 100,000 in males and >5 per 100,000 in
females.7,8 Incidence rates were lowest (<1.5 per 100,000)
in Africa and the Pacific Islands.9 Of the 144,000 deaths
from kidney cancer (1.7% of all deaths) estimated in 2012,
75,000 (52%) were in more developed global regions. Males
have approximately double the chance of developing RCC
compared with females.8 The RCC incidence rate is asso-
ciated with a number of factors such as obesity, hyperten-
sion, smoking, chronic use of pain medications, exposure
to certain chemicals such as trichloroethylene, and genetic
factors such as Von Hippel-Lindau (VHL) syndrome and Birt-
Hogg-Dubé syndrome.9 Early research placed emphasis on
the genetic and molecular pathways of RCC as a conse-
quence of VHL mutation or inactivation, especially in clear
cell RCC (ccRCC).
At least 16 subtypes of RCC have been described, as well

as some common benign renal neoplasms such as renal
oncocytoma.10-12 The most common and consequently the
most researched subtype is ccRCC, accounting for approxi-
mately 70% of RCC. Patients with ccRCC have an overall 5-
year survival rate of 70%-80%.11,12 Papillary RCC is the sec-
ond most common subtype, comprising 15%-20% of RCC,
and has an overall 5-year survival rate of 80%-90%.12 Chro-
mophobe RCC accounts for 6%-11%of cases, with the best
prognosis of 5-year survival at approximately 90%.12 Col-
lecting duct RCC is a rare subtype, accounting for <1% of
all RCC, but it has the worst prognosis, with a 5-year survival
rate <5%.12 The remaining subtypes occur very rarely.

FACTORS IN DEVELOPMENT AND
PROGRESSION OF RENAL CELL CARCINOMA
AND POTENTIAL TREATMENT TARGETS
Genetic Mutations
Genetic alterations are common in RCC. Typically, there is

a loss of tumor suppressor gene function either by deletion of
the gene or hypermethylation of the gene promoter. Almost
all hereditary and 86% of sporadic ccRCC cases have these
mutations, particularly in the VHL gene that encodes the VHL
protein (pVHL).13 Loss or alteration of the VHL gene leads to
the abnormal accumulation of hypoxia-inducible factor (HIF)
proteins and subsequent activation of HIF target genes that
are central to controlling angiogenesis.14 Other tumor sup-
pressor genes—such as the Wilms tumor 1 gene (WT1), the
phosphatase and tensin homolog (PTEN) deleted on chro-
mosome 10 gene, and p53—are all involved in activation
of the apoptotic pathway that involves disruption of the cell
cycle and progression of RCC.15,16 WT1 is responsible for the
regulation of downstream targets that are involved in pro-
liferation and cell migration and in vessel formation via the

inhibition of VEGF and angiopoietin (Ang).15 Low WT1 tran-
script levels have been reported in RCC tissue samples com-
pared with noncancerous kidney tissue, demonstrating the
importance of loss of this gene in RCC development. Sim-
ilarly, PTEN expression is frequently reduced in advanced
RCC.16

One of the most commonly mutated or inactivated tumor
suppressor genes in cancer is p53; however, there is wide
variation in the reported incidence and significance of p53
mutations in patients with RCC.17 In some cases, p53 muta-
tions were seen as prognostic factors for RCC, with an
increased incidence of p53 mutations related to increasing
grade and stage of the RCC17 and increased p53 expres-
sion correlating with reduced disease-specific survival.18 In
other cases, p53-independent cell cycle inhibitors, such as
the cyclin-dependent kinase inhibitor p27, regulated the cell
cycle at the G1 checkpoint and mediated oncogenic sig-
naling pathways in RCC, including the phosphoinositide
3-kinase (PI3K)/Akt pathway, cyclin D1, and c-Myc.19

Activation of Hypoxia-Inducible Factors and
Related Proteins
Increased cell cycle activity and proliferation in RCC

consume energy and reduce oxygen supply, leading to
increased angiogenesis and metabolic bypass in the tumor
microenvironment. HIFs regulate and augment angiogenic
growth factor production, which in turn increases oxygen
delivery and metabolic reprogramming of cellular glucose
and energy metabolism.20 Under normal conditions, when
tissue oxygen levels are adequate, HIFs are rapidly degraded
via pVHL-mediated ubiquitination. HIFα, a member of the
HIF family, is notable for its expression in RCC cells. In the
presence of oxygen, HIFα is hydroxylated, resulting in a bind-
ing site for pVHL. In a hypoxic setting or in cells that lack
pVHL, HIFα is involved in RCC progression by altering the
regulation of target genes that are responsible for changes
that take place in RCC metabolism and by promoting the
proliferation and angiogenesis that are characteristic of RCC
tumors.20,21 Three human HIFα dimers have been described;
however, the HIF1α and HIF2α subunits have been most fre-
quently reported in RCC. The transcriptional activator HIF2α

plays a critical role in renal tumorigenesis through its poten-
tiating effect on the c-Myc oncogene.21 The HIFα dimers and
their associations with pVHL and angiogenic and tumori-
genic growth factors represent key potential targets for ther-
apy in patients with RCC.22

Cellular Metabolism
RCCs are highly metabolic cancers.23 The increased

energy demand of proliferating tumor cells, accompanied by
the promotion of angiogenesis, drives increased oxygen lev-
els within the tumor itself.24 However, RCC cells do not pro-
duce energy in the form of adenosine triphosphate (ATP) in
the same way that noncancerous renal tissue does. RCCs
and other cancers are highly dependent on aerobic glycol-
ysis for the production of energy; this phenomenon is well
established in RCC and is called the Warburg effect.25,26

Additionally, hypoxia in cancer cells is accompanied by
an increased efflux of protons, with upregulation of the
carbonic anhydrase IX (CAIX) transmembrane protein that
allows tumor cells to survive despite disturbances in the
acid-base chemistry of the tumor microenvironment.27
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Tumor Microenvironment
Additional extracellular support by the tumor microenvi-

ronment is essential for RCC proliferation and progression.6

Although the human immune system has a natural capability
to inhibit tumor cell growth and to eradicate cancer cells, in
many cases, the immune cells seem to have a secondary role
of stimulating cancer growth and invasiveness. The immune
cell population is typically made up of T cells, B cells,
dendritic cells, natural killer cells, monocytes/macrophages,
and neutrophils.28 RCC growth is associated with impaired
antitumor immune response, ensuring sustained proangio-
genic, proproliferative, and antiapoptotic stimulation.29 Sev-
eral known factors—such as the extracellular matrix metallo-
proteinase (MMP)-2 and MMP-9, the epithelial cell adhesion
molecule (EpCAM), and members of the integrin/cadherin
family—have the capacity to catalyze the tissue protective
barriers. When these extracellular matrix proteins are dis-
turbed, RCC invasion is more likely to occur.29,30 These data
suggest that cancer-related immunity and inflammation are
reasonable targets for therapy. In addition, the presence of
the inflammatory mediators locally in the tumor microenvi-
ronment can be a useful tool for risk predictions in patients
with RCC.31,32

Growth Factors, Their Receptors, and
Downstream Targets
The tumor development and cellular proliferation that take

place in RCC can be attributed to a disequilibrium among
growth factors and growth factor receptors that ultimately
promotes the development of RCC.33 Tumor angiogenesis is
of particular importance in RCC, with several proangiogenic
growth factors, such as VEGF and platelet-derived growth
factor (PDGF), being overexpressed in RCC. These proan-
giogenic growth factors are expressed on different sites,
with VEGF receptors (VEGFR) on the endothelial cells of
the tumor vessels and PDGF receptors (PDGFR) present
in vascular pericytes.34 The pericyte-covered tumor blood
vessels resist inhibition of VEGF by alternative stimulation
of endothelial cell survival signals.35 Receptor pathways for
Ang-1/2 and tyrosine kinase with immunoglobulin-like and
EGF-like domains 2 (Tie2) are other promising angiogenic
treatment targets considered to be beyond VEGF/PDGF reg-
ulation in RCC. Ang-2 is strongly expressed in the vascu-
lar endothelium of both noncancerous kidneys and RCC but
weakly expressed in tumor cells. Tie2, on the other hand, is
exclusively expressed on the endothelium.36

The mTOR gene is another important potential therapy
target.37 Its significant role in cellular bioenergetics and cell
proliferation makes it a prime target for therapeutic develop-
ment in RCC.37 mTOR is a kinase in the family of PI3K-related
kinases, and it is activated via growth factor or cytokine
receptors located on the cell surface.38 mTOR consists of
two complexes: mTORC1 and mTORC2. mTORC1 con-
tains the co-protein regulatory-associated protein of TOR
(RAPTOR), which is sensitive to rapamycin, and mTORC2
contains its rapamycin-insensitive companion RICTOR.38

PI3K is also important, as it phosphorylates and activates
Akt, which is responsible for the activation of tuberin, also
known as the tuberous sclerosis protein complex 2 (TSC2).
TSC2 together with hamartin (also called TSC1) forms the
TSC1/TSC2 complex.38 mTOR is phosphorylated as a result
of the consecutive loss of TSC1 and TSC2. Phosphorylated

mTOR is then responsible for the stimulation of energy and
protein synthesis in RCC. In addition, inhibition of glycogen
synthase kinase 3 (GSK-3) activates mTOR.38

The Wnt/β-catenin signaling cascade has emerged as
having an important role in the development and progres-
sion of RCC.39 The secreted Wnt glycoprotein activates this
pathway, which results in the cytoplasmic accumulation of
β-catenin that later translocates to the nucleus where it
interacts with the pVHL/HIF axis and activates RCC target
genes.40 These signaling cascades not only support cancer
growth but are also equally important for delivering sufficient
nutrients and oxygen in tumorigenesis and beyond.41

MOLECULAR MECHANISMS OF THERAPY
RESISTANCE IN RENAL CELL CARCINOMA

Generally, tumors are considered to be sensitive to tar-
geted agents if their growth and proliferation are dependent
on the signaling pathway targeted by these agents. Inac-
cessibility of a drug to its target may result from structural
alterations or activation of alternative signaling pathways.
Alternatively, drug-mediated inhibition may be counterbal-
anced by upregulation of a separate set of molecules.42

Alterations in the molecular pathways establish resistance
against a specific targeted therapy. In RCC treatment, the
drug exposure–dependent origin of resistance has been
established in both preclinical and clinical studies.43 Tumor
resistance to antiangiogenic therapies has been categorized
into twomodels: acquired (evasive) and intrinsic (preexisting)
resistance.44,45 Table 1 compares acquired and intrinsic ther-
apy resistance.6,34,35,44,46-68 Figure 1 demonstrates essential
differences between intrinsic and acquired resistance. Fig-
ure 2 demonstrates molecular mechanisms of resistance to
therapy in RCC.

Acquired (Evasive) Resistance and Intrinsic
(Preexisting) Nonresponsiveness

Emerging research suggests that at least 5 distinct pro-
cesses mediate acquired resistance to VEGF-targeted ther-
apies: (1) upregulation or downregulation of alternative sig-
naling pathway genes that support tumor angiogenesis via
the angiogenic switch; (2) increased pericyte accumula-
tion and activity around tumor vessels; (3) recruitment of
proangiogenic inflammatory cells from bone marrow; (4)
lysosomal sequestration of drugs; and (5) increased inva-
siveness of tumor cells via EMT, negating the need for
neovascularization.44,45 Gotink et al were first to postulate
on the mechanism of lysosomal sequestration as a spe-
cific cellular adaptation to toxic TKI concentrations in in
vitro models.46 These mechanisms are described below with
examples that explain acquired resistance to TKI and mTOR
inhibitors.

Intrinsic nonresponsiveness to cancer therapy is a preex-
isting condition, perhaps genetically determined, that can
be defined by the minimal or absent beneficial effect of
a cancer therapy, ranging from the inability to shrink or
stabilize tumors to the lack of improvement in quality of
life.47 In RCC, one genetic determinant of nonresponsive-
ness may be, at least in part, expression of the mul-
tidrug resistance 1 (MDR-1) gene. However, studies using
appropriate pharmacologic intervention to reverse multidrug
resistance and make RCC more sensitive to chemother-
apy have, in general, been disappointing.48 Complete
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Figure 1. Possible pathways of resistance to targeted therapies that potentiate tumor aggressiveness in renal cell carcinoma.
Themechanisms for intrinsic (preexisting) resistance or nonresponsiveness involve (1) insufficient inhibition of the targets by
the treatment, (2) immunomodulatory effects, and (3) reduced apoptosis. In acquired (evasive) resistance, the tumor initially
responds to therapy but stops responding to the treatment after initial shrinkage, and the disease relapses. The pathways
postulated to be involved in acquired resistance are (1) an angiogenic switch, (2) increased pericyte coverage of tumor ves-
sels, (3) recruitment of proangiogenic inflammatory cells from bone marrow, (4) lysosomal sequestration, and (5) epithelial-
mesenchymal transition. VEGF, vascular endothelial growth factor.

nonresponsiveness of patients to VEGF-targeted therapy
also indicates that this condition is likely to be determined
by individual genetic determinants. Moreover, the primary
resistance in some patients could be relative, determined
by the individual pharmacokinetic variability and/or VEGFR
polymorphisms.47

Alternative Angiogenic Pathways
Tumor responsiveness to TKIs followed by lack of

response with restored tumor growth is commonly seen clin-
ically in patients with RCC. Preclinical studies have pro-
vided much of our current knowledge. For example, the cen-
tral tumor promotion process of angiogenesis may occur
through overexpression of factors involved in alternative
proangiogenic pathways and by downregulation of angio-
static ones.49 Casanovas et al studied genetically engi-
neered Rip1-Tag2 mice in a preclinical model of pancreatic
neuroendocrine (islet cell) cancer.50 They performed DC101
antibody-mediated blockade of the VEGF signaling pathway
(VEGFR2 in particular) and generated 10-14 days of transient
attenuation of tumor growth with an associated decrease
in tumor vascularity. Following tumor regrowth and revas-
cularization, mRNA analysis revealed that the new tissue
contained overexpression of proangiogenic factors, notably
fibroblast growth factor 1 and 2 (FGF1/2), ephrin A1 and A2

(EFNA1/2), and Ang-1, compared with tumor tissues that
had not been treated. The upregulation of these genes is
likely the result of acute hypoxia caused by antiangiogenic
treatments.50

Another factor that plays a significant role in RCC angio-
genesis is IL-8. Mizukami et al first described the use of
anti–IL-8 antibodies to block tumor angiogenesis in colon
cancer cell lines.51 In the same study, cell lines with HIF1α

knockdownwere shown to preserve VEGF expression. Other
studies investigating the ability of IL-8 to function as a
proangiogenic cytokine have demonstrated that antibody-
mediated neutralization of IL-8 caused tumor resensitiza-
tion to sunitinib treatment.52 The link between IL-8 and
sunitinib resistance suggests that IL-8 levels may be used
as a surrogate for predicting response to sunitinib and
may identify patients with acquired or intrinsic resistance to
sunitinib.52

The Ang/Tie signaling system is another essential
proangiogenesis pathway in RCC that acts alongside
VEGF to promote vascularization of RCC by moderating
endothelial cell survival and vascular maturation.53,54

The Ang/Tie pathway is composed of tyrosine kinase
receptors Tie1 and Tie2 with corresponding Ang-1 and
Ang-2 specific ligands. The study by Wang et al demon-
strated that plasma levels of Ang-2 decreased during the
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Figure 2. Potential mechanisms of resistance to sunitinib in renal cell carcinoma (RCC) may include (1) upregulation of
proangiogenic factors (IL-8, PlGF, FGF, angiopoietin), (2) increased invasive and metastatic potential of the tumor, (3) re-
sistance mediated by the tumor microenvironment through the recruitment of bone marrow–derived cells (CD11b), (4)
secretion of FGF and HGF and activation of alternative signaling pathways, and (5) lysosomal sequestering of sunitinib.
G-CSF, granulocyte-colony stimulating factor; HGF, hepatocyte growth factor; HIF1α/β, hypoxia-inducible factor 1 alpha/beta;
HRE, hypoxia-responsive element; IL, interleukin; mTORC1 and mTORC2, mammalian target of rapamycin complex 1 and 2;
PDGF(R), platelet-derived growth factor (receptor); PDGF-C, platelet-derived growth factor-C; PlGF, placental growth factor;
PI3K, phosphoinositide 3-kinase; SDF1, stromal cell-derived factor 1; SUN, sunitinib; VEGF(R), vascular endothelial growth factor
(receptor).

responsive stage of sunitinib therapy and increased during
the sunitinib resistance phase in patients with metastatic
RCC.53 Ang-2/Tie2 signaling is likely to act alongside the
VEGF-dependent pathway. Therapies that aim to target

Ang-2 by a new class of biotherapeutics called CovX-Bodies
(a protein-antibody construct) demonstrate decreased
tumor vessel density, especially when these drugs are
combined with sunitinib and sorafenib.55
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Pericyte Coverage of Tumor Vessels
VEGF and other factors are expressed in considerable lev-

els by the pericytes to support endothelial cells.34,35 During
anti-VEGF therapy, pericytes are responsible for the integrity
of stable and functioning blood vessels in some tumors. Sev-
eral groups have observed that pericytes covering the tumor
vessels survive cancer therapy.44 Thus, pericytes appear to
be critical for maintaining the structure of tumor vascula-
ture in the absence of VEGF-mediated signaling. Moreover,
anti-VEGF therapy is more potent in tumors that lack peri-
cyte protective coverage.34,35 Sunitinib and sorafenib target
both VEGFR and PDGFR and result in the inhibition of PDGF-
mediated pericyte induction.56 Such pericyte inhibition may
add to tumor metastasis by disrupting vascular integrity and
releasing the tumor cells into the bloodstream.56

Bone Marrow–Derived Proangiogenic
Inflammatory Cell Recruitment
Antiangiogenic treatment not only causes regression of

tumor vasculature but also causes hypoxia, which stimulates
proangiogenic factor production in the tumor and recruit-
ment of different bonemarrow–derived cells (BMDCs). These
BMDCs include proangiogenic tumor-associated macro-
phages,57 VEGFR1-positive hemangiocytes,58 immature
monocytes (Tie-positive monocytes),59 and CD11b-positive
myeloid-derived suppressor cells.60 BMDCs act primarily
through the expression of cytokines, growth factors, and
proteases, supporting the remodeling of vasculature.61 The
immunosuppressive and proangiogenic nature of myeloid-
derived suppressor cells indicates that theymight have a role
in the development of therapy resistance in patients treated
with sunitinib.62

Sunitinib Sequestration in Lysosomes
For many years, sunitinib has been the cornerstone of TKI

therapy for RCCs and central to the study of their therapy
resistance. Resistance to sunitinib therapy may be via lyso-
somal sequestration of the drug.63 The intratumoral concen-
tration of sunitinib may be up to 10 times higher than the
plasma level. Sunitinib sequestration to lysosomes may then
deplete the cellular concentration in tumor cells.64 Lysoso-
mal sequestration was confirmed by using fluorescent tag-
ging and microscopy. The hydrophobic nature of sunitinib
facilitates crossing the lysosomal membrane. However, pro-
tonation in acidic lysosomes traps it inside the lysosomes.
Lysosomal sequestration of sunitinib is, however, considered
to be reversible.64,65

Tumor Cell Invasiveness via
Epithelial-Mesenchymal Transition
Increased tumor invasiveness contributes to tumor

adaptation to antiangiogenic therapy. Increased tumor
invasiveness and slow tumor growth were observed
in a preclinical mouse model of glioblastoma despite
downregulated VEGF, HIFα, and MMP-9.66 Hammers et al
reported that reversion of previously acquired resistance is
associated with the onset of EMT in ccRCC with sunitinib
resistance.67 Induction of genes associated with EMT may
also concurrently activate the signaling responsible for ther-
apy resistance in the tumor microenvironment. The return
to an epithelial phenotype with sensitivity to cancer therapy

in metastatic RCC has been demonstrated in human tumor
xenografts.68

MECHANISM OF ACTION OF EXISTING
THERAPIES FOR RENAL CELL CARCINOMA

As mentioned previously, RCCs are highly vascularized
cancers. VEGF andmTOR are two key signaling pathways of
interest in RCC therapeutics. RCC may be characterized by
the silent mutation of the VHL gene.69,70 pVHL is a compo-
nent of the E3 ubiquitin ligase complex, which is a protago-
nist in proteasome-mediated degradation of HIFα.70 HIFα is a
transcription factor and when unregulated results in the tran-
scription of a wide range of genes including VEGF, PDGF, and
transforming growth factor alpha (TGF-α).70 These genes
are crucial for tumor angiogenesis and progression. Existing
targeted therapies are directed toward specific gene prod-
ucts, whereas drug resistance involves a different set of gene
targets.71 Sorafenib is a commonly used small molecule TKI,
but sunitinib is the most common first-line therapy.72 They
both act as an antagonist of VEGFR and PDGFR and atten-
uate tumor angiogenesis. VEGFR and PDGFR inhibition is
relevant only in VHL-inactivated modes of RCC.73 Several
other VEGF pathway inhibitors have proven to reduce tumor
mass in more than 80% of patients with RCC.74-76 In a pre-
clinical model, such a reduction of tumor mass suggests
heterogeneity of RCC in which hypoxia may be responsi-
ble for tumor growth rather than loss or alteration of the
VHL gene.75 mTOR pathway activation involves a growth
factor signal transduction and several intercellular regula-
tory factors.77 Activation of the mTOR pathway triggers
enhanced synthesis of ribosomes that increases translation
of mRNA to protein.44 These effects lead to the produc-
tion of HIF1α, as well as cell cycle regulators such as c-
Myc and cyclin D1.77 Current first- and second-line targeted
therapies for RCC are listed in Table 2 with their molecular
targets.78-89

NOVEL THERAPEUTIC AGENTS FOR RENAL
CELL CARCINOMA
Angiopoietins (Trebananib)

Ang-1/2, ligands for the endothelial receptors Tie1 and
Tie2, may be critical for blood vessel maturation and
integrity. Key roles are basal angiogenesis in response to
hypoxia in RCC and vascular stability in VEGF blockade.90

In human tumor xenograft mouse models, combined Ang-2
and VEGF-A inhibition had a synergistic antitumor activity.91

The combination of trebananib, an anti-Ang peptibody
(peptide-Fc fusion protein), and VEGFR TKIs has had mixed
outcomes in the treatment of patients with advanced RCC.
For example, in a phase II randomized trial in advanced RCC,
trebananib and sorafenib in combination had a better ther-
apeutic response than placebo (38% vs 25%, respectively).
However, no significant effect on median progression-free
survival (PFS) was seen.92 Patients in the placebo arm, when
switched to sorafenib plus trebananib at 10 mg/kg weekly,
had an overall response rate of only 3%. These results indi-
cate the inability of trebananib to overcome acquired resis-
tance to sorafenib. In a similar study, PFS was improved
with a combination of sunitinib and trebananib.93 No normal
tissue toxicity was recorded for trebananib in the study. A
trebananib-sunitinib combination had relatively more ben-
efits than trebananib-sorafenib, possibly because of the
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Table 2. Current Targeted Therapies for Renal Cell Carcinoma

Median Overall Median Progression-Free

Drug Indication Survival, months Survival, months Targets

Sunitinib78,79 First line 26.4 11.0 VEGFR, PDGFR, FLT3, c-KIT, CSF1R, RET

Sorafenib80 Second line 19.3 5.5 VEGFR, PDGFR, RAF

Pazopanib81 First and second line 22.9 11.1 VEGFR, FLT3, c-KIT, PDGFR

Everolimus82 Second line 14.8 4.0 mTOR, HIF1, VEGF

Temsirolimus83 First line 10.9 3.8 mTOR, HIF1, HIF2, VEGF

Axitinib84 Second line 21.7 10.1 VEGFR, PDGFR, c-KIT

Bevacizumab +
interferon alpha85 First line 18.3 10.2 VEGF

Cabozantinib86 Second line 21.4 7.4 RET, KIT, AXL, FLT3, c-MET, VEGFR

Dovitinib87 Second line 9.7 3.6 FGFR, VEGFR, PDGFR

Nivolumab88,99 Second line 23.4 2.7-4.2 PD-1

Lenvatinib89 Second line 18.4 7.4 VEGFR, PDGFR, FGFR, RET, c-KIT

AXL, receptor tyrosine kinase; c-KIT, tyrosine-protein kinase; c-MET, tyrosine-protein kinase met; CSF1R, colony-stimulating factor 1 receptor; FGFR,
fibroblast growth factor receptor; FLT3, fms-like tyrosine kinase 3; HGF, hepatocyte growth factor; HIF1/2, hypoxia-inducible factor 1/2; IFN-α, interferon
alpha; KIT, proto-oncogene; mTOR, mammalian target of rapamycin; mTORC1, mammalian target of rapamycin complex 1; PD-1, programmed death
protein 1; PDGF, platelet-derived growth factor; PDGFR, platelet-derived growth factor receptor; RAF, rapidly accelerated fibrosarcoma; RET, proto-
oncogene rearranged during transfection; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor receptor.

potent VEGF inhibition of sunitinib, which may maximize the
Ang inhibition on tumor angiogenesis.

c-Met and Hepatocyte Growth Factor
(Cabozantinib)
c-Met (sometimes termed Met or MET) is a receptor

tyrosine kinase that when bound to its ligand hepato-
cyte growth factor (HGF) activates a wide range of differ-
ent cellular signaling pathways, including those involved
in proliferation, motility, migration, and invasion.94 High
tumor grade and clinical stage in RCC correlate with
increased c-Met expression, which is also considered an
independent predictor of poor prognosis in patients with
RCC.94 Expression of c-Met was higher in endothelial cells
than in tumor cells in a human tumor xenograft model.
This rationale provides an explanation for the develop-
ment of resistance to VEGF-targeted therapy by main-
taining alternate angiogenic pathways.95 In tumors resis-
tant to the VEGF pathway inhibitor, expression of HGF,
the ligand for c-Met, was increased. The increase in the
c-Met/HGF pathway is believed to be one of the drivers
for acquired resistance to antiangiogenic therapy. Selec-
tive c-Met inhibitors in combination with sunitinib may act
to decrease resistance to therapy in RCC.96 Cabozantinib
(XL184) is a multikinase inhibitor that, in addition to inhibit-
ing the Met receptor and VEGFR2, also inhibits several other
potentially relevant tyrosine kinases receptors, namely RET
(rearranged during transfection tyrosine-protein kinase), KIT
(otherwise mast/stem cell growth factor receptor), AXL (cell
surface receptor tyrosine kinase), and FLT3 (fms-like tyro-
sine kinase-3).97 Cabozantinib has been approved for the
treatment of several cancers, including advanced metastatic
RCC. In a clinical study, 25 previously treated patients with
metastatic RCC were administered a 140 mg daily dose of
cabozantinib. Twenty-eight percent of patients (7 patients)
had a partial response, while 52% of patients (13 patients)

had their disease stabilized.97 The median PFS was 14.7
months, higher than for treatment-naïve patients. An effec-
tive response was observed in 3 of 4 patients with bone
metastasis, while 2 patients had effective palliation of bone
pain.
These results led to randomized phase II and then phase

III trials of sunitinib and everolimus (mTOR inhibitor), respec-
tively. Several other c-Met receptor inhibitors and HGF or c-
Met antibodies are under clinical investigation.98 The poten-
tial of these agents—as single agents and in combination
with other VEGF-targeted therapy—to treat advanced RCC
is encouraging. Papillary RCC, an aggressive subtype of
RCC, often has c-Met mutations, making it a prime ther-
apy target. Figure 3 summarizes the vessel normalization in
tumors in response to antiangiogenesis therapy and tumor
regrowth and dissemination.

Immunotherapeutics
One of the recently understood mechanisms associated

with the progression of RCC is the immune checkpoint
pathway which consists of cellular interactions that prevent
excessive activation of T cells under normal conditions.99 As
an evasion mechanism, many tumors are able to stimulate
the expression of immune checkpoint molecules, resulting in
a phenotype of exhausted T cells that cannot restrain tumor
progression.100 One inhibitory ligand and receptor that are
important immune checkpoint modulators in solid tumors
are the programmed death ligand 1 (PD-L1), also called B7-
H1 or CD274, and the programmed death protein 1 (PD-1),
also called CD279. This pair prevents the killing of cancer
cells by cytotoxic T lymphocytes.101 PD-1 is expressed by
activated T cells among other cells, while PD-L1 is overex-
pressed on many tumor types including RCC.101

RCCs are established as immunogenic tumors because of
the high level of tumor T cell infiltration and responsiveness
to new immunotherapies.102 Additionally, because RCCs
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Figure 3. Model of vessel normalization in tumors in response to antiangiogenesis therapy: tumor regrowth and dissemi-
nation. In normal tissues, the actions of antiangiogenic factors counterbalance the actions of proangiogenic factors. Under
pathologic conditions, the increased expression of proangiogenic factors and the reduced antiangiogenic factors deregulate
this balance, predominant in the case of tumors with a very abnormal vasculature. In response to antiangiogenic therapy,
the balance of antiangiogenesis and proangiogenesis is brought back to near normal, and tissue vasculature normalization
is observed. Initially, the treatment inhibits the growth of the primary tumor, but the growth inhibition is generally followed
by tumor relapse because of gradual development of resistance to therapy.

develop resistance to chronic use of targeted TKIs, immune
checkpoint blockade has become a point of interest.103 The
rationale is to restore the patient’s natural tumor-specific
T cell–mediated immune responses by neutralizing any
inhibitory signaling.103 Nivolumab, a PD-1 monoclonal anti-
body approved for patients with metastatic melanoma and
lung cancers, has also been approved for use in metastatic
RCC.88,104 Nivolumab neutralizes the interaction between
PD-1 and its ligands PD-L1 and PD-L2.88 PD-1 interaction
with its ligands is normally responsible for the downregu-
lation of cellular immune response.105 Nivolumab has been
shown to enhance T cell function in vitro and can play a
vital role in antitumor activity.105 In clinical studies, treat-
ing patients who have metastatic RCC with nivolumab was
safe and effective.106 Sunitinib-nivolumab and pazopanib-
nivolumab combinations are being tested in patients with
advanced metastatic RCC.107

Initial clinical studies of nivolumab in patients with
advanced ccRCC demonstrated important clinical activ-
ity and provided the rationale for a phase III trial.108

In this clinical trial, called CheckMate 025, previously
treated patients with advanced RCC were randomized to
nivolumab vs everolimus. The nivolumab group not only
had increased overall survival but also health-related qual-
ity of life benefits.104,109 However, the response rate in the
nivolumab group was 24% partial and only 1% complete.
The expression of PD-L1 on tumor cells was not asso-
ciated with overall survival. Another phase III clinical trial

was the ARISER study. In one of the researchers’ pub-
lications, the combination therapy of nivolumab and ipil-
imumab, an anti–cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4) checkpoint inhibitor, was used with previ-
ously untreated patients with advanced RCC and markedly
improved patient response rate compared with sunitinib in
intermediate- or poor-risk disease and PD-L1 expression of
�1% in tumors.110

Patient outcome and decisions made for application of
new therapies are not always positive for immunotherapies.
Treatment with tivozanib (a selective inhibitor of VEGFR 1,
2, and 3) after sorafenib in patients with advanced RCC
demonstrated antitumor activity and was associated with
few serious patient adverse events, but the drug did not
receive US Food and Drug Administration approval for use
in patients with RCC.111 In another of the publications
from the ARISER clinical trial, adjuvant weekly treatment
with girentuximab, a monoclonal antibody that binds CAIX,
had no clinical benefit for high-risk RCC patients follow-
ing nephrectomy.112 In the ASSURE trial testing adjuvant
therapy with sunitinib or sorafenib against placebo, patients
with high-risk ccRCC did not have significantly improved
outcomes.113,114

In comparison with some nonspecific immunotherapies—
for example, the cytokines IL-2 and IFN-α—next-generation
targeted immunotherapeutics enable the induction of a more
specific T cell response against RCC cells. One example is
IL-8. Induction of IL-8 preserved the angiogenic response
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in HIF1α-deficient colon cancer cells, and application of
IL-8 neutralizing antibody decreased angiogenesis.51 In a
mouse xenograft model of RCC, tumor growth in sunitinib-
resistant mice was significantly reduced with IL-8 neutral-
ization compared to mice on sunitinib treatment alone. In
an additional analysis in this report, higher IL-8 expres-
sion was observed in patients with ccRCC who had intrin-
sic/preexisting resistance to sunitinib, suggesting that early
resistance to VEGFR TKIs could be augmented by preex-
isting elevated expression of IL-8.52 In a phase III trial of
pazopanib for patients with advanced RCC, higher expres-
sion of IL-8 correlated with shorter PFS. MiR-200 microRNA
inhibited tumor angiogenesis by targeting IL-8 and CXCL1
secreted by tumor cells and the endothelium.115 These stud-
ies show that inhibiting IL-8, either directly or indirectly,
has therapeutic potential in patients with resistant RCC.
IL-6 is also associated with poor prognosis in RCC.116

Tocilizumab, an IL-6 receptor inhibitor, has been tested
preclinically in cell cultures and in mice after TKI resis-
tance developed to sorafenib, sunitinib, and pazopanib.116

IL-6 neutralization by tocilizumab resulted in reduced tumor
cell proliferation. Thus, a combination therapy of TKIs and
IL-6 receptor inhibitors may represent a novel therapeutic
approach for RCC treatment. The toxicity to noncancer tis-
sue remains to be fully evaluated.

CONCLUSION
A clinically significant issue for treatment of RCC, partic-

ularly metastatic RCC, is its development of resistance to
targeted therapies. The initial tumor stabilization or regres-
sion induced by VEGF and/or mTOR pathway inhibition
is not sustained. Current evidence has proven a correla-
tion between the reestablishment of angiogenesis and resis-
tance to VEGF inhibition. However, these mechanisms are
unable to provide clear and unique insights into the resis-
tance mechanisms that can be used to design new thera-
peutics. Data from preclinical and clinical studies investigat-
ing the efficacy of dose increase or alternate (relatively more
potent) inhibitors of the VEGF pathway support the ratio-
nale that the VEGF pathway is a critical target. However,
resistance inevitably occurs and develops even with more
potent agents that are used as second- and third-line ther-
apies. Available treatments for metastatic RCC are continu-
ously being proposed, particularly in high-risk patients with
clinically localized disease. The trials produce mixed out-
comes for patients. The mTOR pathway is central to can-
cer cell growth deregulation, and mTOR inhibitors therefore
add some overlapping but novel pathways for considera-
tion. Targeted immunotherapeutics are certainly an attrac-
tive alternative or adjunct therapy to the antiangiogenic com-
pounds, and they are in constant development. The out-
comes for patients with advanced RCC will, therefore, be
greatly improved with enhanced, more potent, and multitar-
geted signaling pathway inhibition, including immune check-
point blockade.
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