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INTRODUCTION
Translating results from published clinical trials to every-

day clinical practice is not a straightforward process. Obser-
vational trials generally are conducted at the beginning of
investigations to determine the effectiveness of a therapeutic
intervention. However, observational trials suffer from con-
founding by indication, when decisions for a particular treat-
ment are based upon clinical presentation.1,2 Randomized
controlled trials (RCTs) are then developed to minimize con-
founding by indication, as randomization ensures that both
measured and unmeasured confounders are, on average,
balanced between the groups of interest.2,3 Yet RCTs are
not representative of the patient population as they suffer
from design restraints, restrictive enrollment criteria, patient
participation, and clinical disease variability, and can also
lack external validity.4-7 One additional confounder of RCTs is
observational bias, when the patient and/or caregiver modi-
fies responses to care because they are aware of the study
conditions. The modification of responses as a result of
being observed, or the Hawthorne effect, has its origins in
the telephone equipment manufacturing industry.1,7-9

HISTORY OF THE HAWTHORNE WORKS
Telecommunication equipment, including telephones,

for the American Telephone & Telegraph Company (AT&T,
“Ma Bell”) was manufactured at the Western Electric
Company Hawthorne Plant in Illinois from the 1920s to
the mid-1960s and then transferred to the Shreveport
plant in Louisiana. To improve manufacturing productivity,
research was conducted in a series of observational trials
to measure changes in productivity following experimental
alterations in the workplace environment. Following initial
experiments on workplace lighting, a special assembly
workroom was established to allow production behavior
to be carefully monitored following additional changes in
the environmental conditions. Implementation of rest and
lunch breaks, different work hour shifts, and choosing
one’s coworkers initially improved productivity, but once
observation ceased, productivity returned to near-normal
levels.10 These changes in observed productivity were later
termed the Hawthorne effect.9 This effect has been studied
in other disciplines such as social psychology, industrial and
organizational psychology, management theory, industrial
sociology, psychiatry, and now in medicine.10

HAWTHORNE EFFECT IN MEDICINE
The Hawthorne effect has been reported in periopera-

tive studies. Nakayama et al,11 Teernstra et al,12 and Kwaan

et al13 had unexpected improvements in their control groups
when compared to similar control groups from earlier pilot or
published studies.14 These authors credited the differences
in the latter studies to provider surveillance.11-13 Improve-
ments in interventional studies have also been reported
because of the Hawthorne effect.15-18 Hence, the Hawthorne
effect can occur when either the patients and/or health care
workers are aware of the study conditions, which poses
difficulty when generalizing the results to clinical practice.
Eventually, the clinical effectiveness of any new medica-
tion needs re-examination under real-world, non-Hawthorne
effect conditions.1,7-9

CONFOUNDERS
Although RCTs should evenly distribute known and

unknown factors between groups,7 in clinical practice, ther-
apies are not randomized, thereby introducing confounding
by indication. In a report by Benson and Hartz, who exam-
ined treatment outcomes in 19 diverse medical and surgical
treatments compared with both RCT and non-RCTmethods,
the outcome effect sizes were similar, with only 2 of 19 anal-
yses dissimilar to the point where differences in treatment
effects fell outside of the 95% confidence intervals.19 McKee
et al reported that neither method consistently gives larger
estimates of treatment effect.20

Eventually, when proposing interventions from clinical tri-
als during everyday clinical care, patient, family, and social
preferences, as well as physician preferences, will influence
therapeutic decisions.20 The introduction of a novel thera-
peutic then must rise above this background noise of con-
founders to be an effective signal in demonstrating improve-
ment in patient care.

INITIAL STUDIES WITH SUGAMMADEX
Neuromuscular blocking agents are frequently used to

facilitate endotracheal intubation and improve surgical work-
ing conditions during general anesthesia.21-24 Reversal of
neuromuscular blockade is frequently required to facilitate
return of airway muscle function, including adequate ven-
tilation. This reversal has been achieved through the use
of acetylcholinesterase inhibitors, most commonly neostig-
mine, since the 1950s.25,26 However, in 2015, the FDA
approved the use of the novel cyclodextrin, sugammadex,
in reversing rocuronium- or vecuronium-induced neuromus-
cular blockade.27 Based upon the speed of sugammadex
in reversing neuromuscular blockade when compared to
neostigmine28,29 and with initial comparative studies report-
ing improved operating room discharge and postanesthe-
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Figure 1. Association of surgical times in minutes (min) and
neuromuscular blocking reversal agent—sugammadex in
red and neostigmine in blue—chi-square=120, P<0.0001.
P values <0.005 are statistically significant.36 (For readers of
the print publication, a color version of this figure is available on-
line at https://doi.org/10.31486/toj.22.5031.)

sia care unit recovery times,30,31 editorials32,33 proposed that
the routine use of this modified gamma-cyclodextrin could
provide additional time savings and improve perioperative
productivity.
A 2022 study by Moss et al examined the role of the

neuromuscular blocking reversal agents on operating room
times.34 Although sugammadex was associated with shorter
operating room times of ∼12.5 minutes, the time savings
with sugammadex were largely associated with shorter sur-
gical times.34 We conducted a post hoc analysis of rever-
sal agents by surgical times35 and found that as surgi-
cal times for laparoscopic cholecystectomy increased, a
higher percentage of sugammadex was used for reversal
of rocuronium-induced neuromuscular blockade (Figure 1).
Lower median and interquartile range [IQR] surgical times
for neostigmine (53 [IQR 39-75] minutes) were observed
when compared to sugammadex (64 [IQR 42-99] minutes)
surgical times (chi-square=120, P<0.0001).36 These post

hoc results suggest that the duration of the surgical pro-
cedure played a role in the selection of the neuromuscu-
lar reversal agent. If sugammadex use was delegated to
longer, probably unexpected, laparoscopic cholecystectomy
surgical times, then the quicker reversal effect reported for
sugammadex, when compared to neostigmine,28,37-40 should
translate into less variance or spread in operating room dis-
charge times, including the number of outliers. We parceled
surgical times into 5 groups, with the studentized residuals41

of the operating room discharge times plotted against the
type of neuromuscular blocking reversal agent (Figure 2).
Log-linear variance analysis of the residuals, a manufac-
turing production regression technique,42,43 is shown in the
Table.
The overlay plot in Figure 2 suggests a pattern of smaller

values of studentized sugammadex residuals when com-
pared to the neostigmine studentized residual values. More
studentized neostigmine outliers were observed than stu-
dentized sugammadex outliers (values >3), with greater
numbers observed in the higher surgical time periods. The
log-linear analysis of the residuals shows that the variance
of sugammadex was statistically different than that of the
active control neostigmine (Table). These analyses support
the hypothesis34 that in cases with longer surgical times,
sugammadex may allow for faster completion of surgery as
the number of studentized sugammadex outliers was less
(Figure 2). Nevertheless, in the study by Lee, Ahsan, Chae,
et al,35 the authors explored the perioperative efficiency of
this gamma-cyclodextrin for improving operating room dis-
charge and postanesthesia care unit recovery times without
favorable results.
In summary, confounding occurs during general clini-

cal practice, and clinical investigation needs to address
Hawthorne effect conditions.9 When translating results from
published clinical trials, novel therapeutics need to rise
above this background noise to demonstrate improvements
in patient care.
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Figure2. Overlayplotof studentized residuals (sugammadex in redandneostigmine inblue)ofoperating room(OR)discharge
times by increasing surgical time periods in minutes (min). Studentized residuals41 are displayed in logarithmic scale to im-
prove clarity of the graph. The outlier limit for studentized residuals was set to 3 in this analysis. (For readers of the print publi-
cation, a color version of this figure is available online at https://doi.org/10.31486/toj.22.5031.)
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Table. Log-Linear Variance Analysis of Operating Room Discharge Time Residuals by Neuromuscular Reversal Agent in 1,611
Patients Undergoing Laparoscopic Cholecystectomy

Neuromuscular Blockade
Reversal Agent

Variance Parameter
Estimate 95% CI SE Chi-Square P Value

Sugammadex 1.1 1.03-1.2 0.04 881 <0.0001

Residual 108 101-116 4.0 735 <0.0001

Notes: Neostigmine is the active comparative control. P values <0.005 are statistically significant.36
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