Skip to main content
Log in

What are the residual stresses doing in our blood vessels?

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We show that the residual strain and stress in the blood vessels are not zero, and that the zero-stress state of a blood vessel consists of open-sector segments whose opening angles vary along the longitudinal axis of the vessel. When the homeostatic state of the blood vessel is changed, e.g., by a sudden hypertession, the opening angle will change. The time constant of the opening angle change is a few hours (e.g., in the pulmonary artery) or a few days (e.g., in the aorta). From a kinematic point of view, a change of opening angle is a bending of the blood vessel wall, which is caused by a nonuniformly distributed residual strain. From a mechanics point of view, changes of blood pressure and residual strain cause change of stress in the blood vessel wall. Correlating the stress with the change of residual strain yields a fundamental biological law relating the rate of growth or resorption of tissue with the stress in the tissue. Thus, residual stresses are related to the remodeling of the blood vessel wall. Our blood vessel remodels itself when stress changes. The stress-growth law provides a biomechanical foundation for tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carter, D.R.; Fyhrie, D.P.; Whalen, R.T. Trabecular bone density and loading history: Regulation of connective tissue biology by mechanical energy. J. Biomech. 20:785–794; 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Chuong, C.J.; Fung, Y.C. Three-dimensional stress distribution in arteries under the assumptions of incompressibility and homogeneity. In: van Buskirk, W.C.; Woo, S.L.-Y., eds. 1981 Biomechanics Symposium, AMD-43. New York: The American Society of Mechanical Engineers; 1981: pp. 125–128.

    Google Scholar 

  3. Chuong, C.J.; Fung, Y.C. Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105:268–274; 1983.

    PubMed  CAS  Google Scholar 

  4. Chuong, C.J.; Fung, Y.C. Compressibility and constitutive equation of arterial wall in radial compression experiments. J. Biomech. 17:35–40; 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Chuong, C.J.; Fung, Y.C. Residual stress in arteries. In: Schmid-Schoenbein, G.W.; Woo, S.L.-Y. Zweifach, B.W., eds. Frontiers in Biomechanics. New York: Springer-Verlag; 1986: pp. 117–129.

    Google Scholar 

  6. Chuong, C.J.; Fung, Y.C. On residual stress in arteries. J. Biomech. Eng. 108:189–192; 1986.

    PubMed  CAS  Google Scholar 

  7. Cowin, S.C. Wolff's law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng. 108:83–88; 1986.

    PubMed  CAS  Google Scholar 

  8. Fung, Y.C.; Fronek, K.; Patitucci, P. Pseudoelasticity of arteries and the choice of its mathematical expression. Am. J. Physiol. 237:H620-H631; 1979.

    PubMed  CAS  Google Scholar 

  9. Fung, Y.C. Structure and stress-strain relationship of soft tissues. Am. Zool. 24:13–22; 1984.

    Google Scholar 

  10. Fung, Y.C. What principle governs the stress distribution in living organs. In: Fung, Y.C.; Fukada, E.; Wang, J.J., eds. Biomechanics in China, Japan, and USA. Proc. of an Intern. Conf. held in Wuhan, China, in May 1983. Beijing, China: Science Press; 1984: pp. 1–13.

    Google Scholar 

  11. Fung, Y.C. Biodynamics: Circulation. New York: Springer-Verlag; 1984.

    Google Scholar 

  12. Fung, Y.C. Biomechanics: Motion, flow, stress, and growth. New York: Springer-Verlag; 1990.

    Google Scholar 

  13. Fung, Y.C. Cellular growth in soft tissues affected by the stress level in service. In: Skalak, R.; Fox, D.F., eds. Tissue engineering. New York: Alan Liss; 1988: pp. 45–50.

    Google Scholar 

  14. Fung, Y.C. In search of a biomechanical foundation of tissue engineering. In: Woo, S.L.-Y.; Seguchi, Y., eds. Tissue engineering. New York: ASME Pub. No. BED-Vol. 14; 1989: pp. 11–14.

  15. Fung, Y.C.; Liu, S.Q. Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circulation Res. 65:1340–1349; 1989.

    PubMed  CAS  Google Scholar 

  16. Fung, Y.C.; Liu, S.Q. Changes of zero-stress state of rat pulmonary arteries in hypoxic hypertension. J. Appl. Physiol. (in press).

  17. Fung, Y.C.; Liu, S.Q. Strain distribution in small blood vessels with zero-stress state taken into consideration. Am. J. Physiol. Heart and Circulation. Submitted. 1990.

  18. Guyton, A.C.; Coleman, T.G.; Cowley Jr., A.W.; Laird, J.F.; Norman, R.A.; Manning Jr., R.D. Systems analysis of arterial pressure regulation and hypertension. Annals of Biomed. Eng. 1:254–281; 1972. ALZA Lecture. Baltimore, MD, April 7, 1972.

    Article  CAS  Google Scholar 

  19. Han, H.C.; Fung, Y.C. Species dependence on the zero-stress state of aorta: pig vs rat. J. Biomech. Eng. (in press).

  20. Han, H.C.; Fung, Y.C. Residual strains in porcine and canine trachea. J. Biomech. Accepted. 1990.

  21. Hayashi, K.; Takamizawa, K. Stress and strain distributions in residual stresses in arterial walls. In: Fung, Y.C.; Hayashi, K.; Seguchi, Y., eds. Progress and new directions of biomechanics. Tokyo, Japan: MITA Press; 1989: pp. 185–192.

    Google Scholar 

  22. Janz, R.F.; Grimm, A.F. Deformation of the diastolic left ventricle. I. Nonlinear elastic effects. Biophys. J. 13:689–704; 1973.

    PubMed  CAS  Google Scholar 

  23. Liu, S.Q.; Fung, Y.C. Zero-stress states of arteries. J. Biomech. Eng. 110:82–84; 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, S.Q.; Fung, Y.C. Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction. J. Biomech. Eng. 111:325–335; 1989.

    PubMed  CAS  Google Scholar 

  25. Liu, S.Q.; Fung, Y.C. Influence of streptozocin-diabetes on zero-stress states of rat pulmonary and systemic arteries. Diabetes. Submitted. 1990.

  26. Meyrick, B.; Reid, L. Hypoxia-induced structural changes in the media and adventitia of the rat hillar pulmonary artery and their regression. Am. J. Pathol. 100:151–178; 1980.

    PubMed  CAS  Google Scholar 

  27. Mirsky, I. Ventricular and arterial wall stresses based on large deformation theories. Biophys. J. 13:1141–1159; 1973.

    Article  PubMed  CAS  Google Scholar 

  28. Omens, J.H.; Fung, Y.C. Residual strain in rat left ventricle. Circulation Res. 66(1):37–45; 1990.

    PubMed  CAS  Google Scholar 

  29. Patel, D.J.; Vaishnav, R.N., eds. Basic hemodynamics and its role in disease process. Baltimore, MD.: University Park Press; 1980.

    Google Scholar 

  30. Skalak, R.; Fox, D.F., eds. Tissue engineering. New York: Alan Liss; 1988.

    Google Scholar 

  31. Takamizawa, K.; Hayashi, K. Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20:7–17; 1987.

    Article  PubMed  CAS  Google Scholar 

  32. Takamizawa, K.; Hayashi, K. Uniform strain hypothesis and thin-walled theory in arterial mechanics. Biorheology 25:555–565; 1988.

    PubMed  CAS  Google Scholar 

  33. Vaishnav, R.N.; Vossoughi, J. Estimation of residual strains in aortic segments. In: Hall, C.W., ed. Biomedical engineering, II. Recent developments. New York: Pergamon Press; 1983: pp. 330–333.

    Google Scholar 

  34. Vaishnav, R.N.; Vossoughi, J. Residual stress and strain in aortic segments. J. Biomech. 20:235–239; 1987.

    Article  PubMed  CAS  Google Scholar 

  35. Vossoughi, J.; Weizsacker, H.E.; Vaishnav, R.N. Variation of aortic geometry in various animal species. Biomedizinische Technik 30:48–54; 1985.

    PubMed  CAS  Google Scholar 

  36. Wolff, J. Über die innere Architektur der Knochen und ihre Bedeutung für die Frage vom Knochenwachstum. Archiv für pathologische Anatomie und Physiologie und für Klinische Medizin (Virchows Archiv). 50:389–453; 1870.

    Article  Google Scholar 

  37. Xie, J.P.; Yang, R.F.; Liu, S.Q.; Fung, Y.C. The zero-stress state of rat vena cava. J. Biomech. Eng. 113:36–41; 1991.

    PubMed  CAS  Google Scholar 

  38. Yin, F.C.P. Ventricular wall stress. Circulation Res. 49:829–842; 1981.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fung, Y.C. What are the residual stresses doing in our blood vessels?. Ann Biomed Eng 19, 237–249 (1991). https://doi.org/10.1007/BF02584301

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584301

Keywords

Navigation