Skip to main content
Log in

A matched-pair comparison of inlay and onlay trochlear designs for patellofemoral arthroplasty: no differences in clinical outcome but less progression of osteoarthritis with inlay designs

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To compare clinical and radiographic results after isolated patellofemoral arthroplasty (PFA) using either a second-generation inlay or onlay trochlear design. The hypothesis was that an inlay design will produce better clinical results and less progression of tibiofemoral osteoarthritis (OA) compared to an onlay design.

Methods

Fifteen consecutive patients undergoing isolated PFA with an onlay design trochlear component (Journey™ PFJ, Smith & Nephew) were matched with 15 patients after isolated PFA with an inlay design trochlear component (HemiCAP® Wave, Arthrosurface). Matching criteria were age, gender, body mass index, and follow-up period. An independent observer evaluated patients prospectively, whereas data were compared retrospectively. Clinical outcome was assessed using WOMAC, Lysholm score, and pain VAS. Kellgren–Lawrence grading was used to assess progression of tibiofemoral OA.

Results

Conversion to total knee arthroplasty was necessary in one patient within each group, leaving 14 patients per group for final evaluation. The mean follow-up was 26 months in the inlay group and 25 months in the onlay group (n.s.). Both groups displayed significant improvements of all clinical scores (p < 0.05). No significant differences were found between the two groups with regard to the clinical outcome and reoperation rate. No significant progression of tibiofemoral OA was observed in the inlay group, whereas 53 % of the onlay group showed progression of medial and/or lateral tibiofemoral OA (p = 0.009).

Conclusion

Isolated PFA using either a second-generation inlay or onlay trochlear component significantly improves functional outcome scores and pain. The theoretical advantages of an inlay design did not result in better clinical outcome scores; however, progression of tibiofemoral OA was significantly less common in patients with an inlay trochlear component. This implant design may therefore improve long-term results and survival rates after isolated PFA.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ackroyd CE, Chir B (2005) Development and early results of a new patellofemoral arthroplasty. Clin Orthop Relat Res 436:7–13

    Article  Google Scholar 

  2. Ackroyd CE, Newman JH, Evans R, Eldridge JD, Joslin CC (2007) The Avon patellofemoral arthroplasty: five-year survivorship and functional results. J Bone Joint Surg Br 89(3):310–315

    Article  CAS  PubMed  Google Scholar 

  3. Arciero RA, Toomey HE (1988) Patellofemoral arthroplasty. A three- to nine-year follow-up study. Clin Orthop Relat Res 236:60–71

    Google Scholar 

  4. Beitzel K, Schottle PB, Cotic M, Dharmesh V, Imhoff AB (2013) Prospective clinical and radiological two-year results after patellofemoral arthroplasty using an implant with an asymmetric trochlea design. Knee Surg Sports Traumatol Arthrosc 21(2):332–339

    Article  PubMed  Google Scholar 

  5. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW (1988) Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol 15(12):1833–1840

    CAS  PubMed  Google Scholar 

  6. Blazina ME, Fox JM, Del Pizzo W, Broukhim B, Ivey FM (1979) Patellofemoral replacement. Clin Orthop Relat Res 144:98–102

    Google Scholar 

  7. Board TN, Mahmood A, Ryan WG, Banks AJ (2004) The Lubinus patellofemoral arthroplasty: a series of 17 cases. Arch Orthop Trauma Surg 124(5):285–287

    Article  CAS  PubMed  Google Scholar 

  8. Borus T, Brilhault J, Confalonieri N, Johnson D, Thienpont E (2014) Patellofemoral joint replacement, an evolving concept. Knee 21(Suppl 1):S47–S50

    Article  PubMed  Google Scholar 

  9. Brattstroem H (1964) Shape of the intercondylar groove normally and in recurrent dislocation of patella. A clinical and X-ray-anatomical investigation. Acta Orthop Scand Suppl 68(SUPPL 68):61–148

    Google Scholar 

  10. Cannon A, Stolley M, Wolf B, Amendola A (2008) Patellofemoral resurfacing arthroplasty: literature review and description of a novel technique. Iowa Orthop J 28:42–48

    PubMed  PubMed Central  Google Scholar 

  11. Caton J, Deschamps G, Chambat P, Lerat JL, Dejour H (1982) Patella infera. Apropos of 128 cases. Rev Chir Orthop Reparatrice Appar Mot 68(5):317–325

    CAS  PubMed  Google Scholar 

  12. Charalambous CP, Abiddin Z, Mills SP, Rogers S, Sutton P, Parkinson R (2011) The low contact stress patellofemoral replacement: high early failure rate. J Bone Joint Surg Br 93(4):484–489

    Article  CAS  PubMed  Google Scholar 

  13. Dahm DL, Kalisvaart MM, Stuart MJ, Slettedahl SW (2014) Patellofemoral arthroplasty: outcomes and factors associated with early progression of tibiofemoral arthritis. Knee Surg Sports Traumatol Arthrosc 22(10):2554–2559

    Article  PubMed  Google Scholar 

  14. Davidson PA, Rivenburgh D (2008) Focal anatomic patellofemoral inlay resurfacing: theoretic basis, surgical technique, and case reports. Orthop Clin North Am 39(3):337–346

    Article  PubMed  Google Scholar 

  15. de Lange-Brokaar BJ, Ioan-Facsinay A, van Osch GJ, Zuurmond AM, Schoones J, Toes RE, Huizinga TW, Kloppenburg M (2012) Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthr Cartil 20(12):1484–1499

    Article  PubMed  Google Scholar 

  16. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2(1):19–26

    Article  CAS  PubMed  Google Scholar 

  17. Dy CJ, Franco N, Ma Y, Mazumdar M, McCarthy MM, Della Valle AG (2012) Complications after patello-femoral versus total knee replacement in the treatment of isolated patello-femoral osteoarthritis A meta-analysis. Knee Surg Sports Traumatol Arthrosc 20(11):2174–2190

    Article  CAS  PubMed  Google Scholar 

  18. Ghosh KM, Merican AM, Iranpour F, Deehan DJ, Amis AA (2009) The effect of overstuffing the patellofemoral joint on the extensor retinaculum of the knee. Knee Surg Sports Traumatol Arthrosc 17(10):1211–1216

    Article  CAS  PubMed  Google Scholar 

  19. Gould D, Kelly D, Goldstone L, Gammon J (2001) Examining the validity of pressure ulcer risk assessment scales: developing and using illustrated patient simulations to collect the data. J Clin Nurs 10(5):697–706

    Article  CAS  PubMed  Google Scholar 

  20. Hinterwimmer S, Minzlaff P, Saier T, Niemeyer P, Imhoff AB, Feucht MJ (2014) Biplanar supracondylar femoral derotation osteotomy for patellofemoral malalignment: the anterior closed-wedge technique. Knee Surg Sports Traumatol Arthrosc 22(10):2518–2521

    Article  PubMed  Google Scholar 

  21. Hollinghurst D, Stoney J, Ward T, Pandit H, Beard D, Murray DW (2007) In vivo sagittal plane kinematics of the Avon patellofemoral arthroplasty. J Arthroplasty 22(1):117–123

    Article  PubMed  Google Scholar 

  22. Imhoff AB, Feucht MJ, Meidinger G, Schottle PB, Cotic M (2015) Prospective evaluation of anatomic patellofemoral inlay resurfacing: clinical, radiographic, and sports-related results after 24 months. Knee Surg Sports Traumatol Arthrosc 23(5):1299–1307

    Article  PubMed  Google Scholar 

  23. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim BS, Reitman RD, Schai PA, Scott RD (1999) Selective patellar nonresurfacing in total knee arthroplasty. 10 year results. Clin Orthop Relat Res 367:81–88

    Article  Google Scholar 

  25. Kooijman HJ, Driessen AP, van Horn JR (2003) Long-term results of patellofemoral arthroplasty. A report of 56 arthroplasties with 17 years of follow-up. J Bone Joint Surg Br 85(6):836–840

    CAS  PubMed  Google Scholar 

  26. Krajca-Radcliffe JB, Coker TP (1996) Patellofemoral arthroplasty. A 2- to 18-year followup study. Clin Orthop Relat Res 330:143–151

    Article  Google Scholar 

  27. Leadbetter WB (2008) Patellofemoral arthroplasty in the treatment of patellofemoral arthritis: rationale and outcomes in younger patients. Orthop Clin North Am 39(3):363–380

    Article  PubMed  Google Scholar 

  28. Leadbetter WB, Kolisek FR, Levitt RL, Brooker AF, Zietz P, Marker DR, Bonutti PM, Mont MA (2009) Patellofemoral arthroplasty: a multi-centre study with minimum 2-year follow-up. Int Orthop 33(6):1597–1601

    Article  PubMed  Google Scholar 

  29. Leadbetter WB, Ragland PS, Mont MA (2005) The appropriate use of patellofemoral arthroplasty: an analysis of reported indications, contraindications, and failures. Clin Orthop Relat Res 436:91–99

    Article  Google Scholar 

  30. Leadbetter WB, Seyler TM, Ragland PS, Mont MA (2006) Indications, contraindications, and pitfalls of patellofemoral arthroplasty. J Bone Joint Surg Am 88(Suppl 4):122–137

    PubMed  Google Scholar 

  31. Lonner JH (2004) Patellofemoral arthroplasty: pros, cons, and design considerations. Clin Orthop Relat Res 428:158–165

    Article  Google Scholar 

  32. Lonner JH (2008) Patellofemoral arthroplasty: the impact of design on outcomes. Orthop Clin North Am 39(3):347–354

    Article  PubMed  Google Scholar 

  33. Lonner JH, Bloomfield MR (2013) The clinical outcome of patellofemoral arthroplasty. Orthop Clin North Am 44(3):271–280

    Article  PubMed  Google Scholar 

  34. Lustig S (2014) Patellofemoral arthroplasty. Orthop Traumatol Surg Res 100(1 Suppl):S35–S43

    Article  CAS  PubMed  Google Scholar 

  35. Lustig S, Magnussen RA, Dahm DL, Parker D (2012) Patellofemoral arthroplasty, where are we today? Knee Surg Sports Traumatol Arthrosc 20(7):1216–1226

    Article  PubMed  Google Scholar 

  36. Lysholm J, Gillquist J (1982) Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale. Am J Sports Med 10(3):150–154

    Article  CAS  PubMed  Google Scholar 

  37. McKeever DC (1955) Patellar prosthesis. J Bone Joint Surg Am 37-A(5):1074–1084

    Article  CAS  PubMed  Google Scholar 

  38. Merchant AC, Mercer RL, Jacobsen RH, Cool CR (1974) Roentgenographic analysis of patellofemoral congruence. J Bone Joint Surg Am 56(7):1391–1396

    Article  CAS  PubMed  Google Scholar 

  39. Monk AP, van Duren BH, Pandit H, Shakespeare D, Murray DW, Gill HS (2012) In vivo sagittal plane kinematics of the FPV patellofemoral replacement. Knee Surg Sports Traumatol Arthrosc 20(6):1104–1109

    Article  CAS  PubMed  Google Scholar 

  40. Odumenya M, Costa ML, Parsons N, Achten J, Dhillon M, Krikler SJ (2010) The Avon patellofemoral joint replacement: five-year results from an independent centre. J Bone Joint Surg Br 92(1):56–60

    Article  CAS  PubMed  Google Scholar 

  41. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757

    CAS  PubMed  Google Scholar 

  42. Provencher M, Ghodadra NS, Verma NN, Cole BJ, Zaire S, Shewman E, Bach BR Jr (2009) Patellofemoral kinematics after limited resurfacing of the trochlea. J Knee Surg 22(4):310–316

    Article  PubMed  Google Scholar 

  43. Smith AM, Peckett WR, Butler-Manuel PA, Venu KM, d’Arcy JC (2002) Treatment of patello-femoral arthritis using the Lubinus patello-femoral arthroplasty: a retrospective review. Knee 9(1):27–30

    Article  CAS  PubMed  Google Scholar 

  44. Tarassoli P, Punwar S, Khan W, Johnstone D (2012) Patellofemoral arthroplasty: a systematic review of the literature. Open Orthop J 6:340–347

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tauro B, Ackroyd CE, Newman JH, Shah NA (2001) The Lubinus patellofemoral arthroplasty. A five- to ten-year prospective study. J Bone Joint Surg Br 83(5):696–701

    Article  CAS  PubMed  Google Scholar 

  46. van Wagenberg JM, Speigner B, Gosens T, de Waal Malefijt J (2009) Midterm clinical results of the Autocentric II patellofemoral prosthesis. Int Orthop 33(6):1603–1608

    Article  PubMed  PubMed Central  Google Scholar 

  47. Walker T, Perkinson B, Mihalko WM (2012) Patellofemoral arthroplasty: the other unicompartmental knee replacement. J Bone Joint Surg Am 94(18):1712–1720

    Article  PubMed  Google Scholar 

  48. Wiberg G (1941) Roentgenographic and anatomic studies on the patellofemoral joint with special reference to chondromalacia patellae. Acta Orthop Scand 12:319–410

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas B. Imhoff.

Ethics declarations

Conflict of interest

A. B. Imhoff and P. B. Schöttle are consultants for Arthrosurface. The company had no influence on study design, data collection, and interpretation of the results or the final manuscript.

Additional information

Matthias J. Feucht and Matthias Cotic have contributed equally to this work and share first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feucht, M.J., Cotic, M., Beitzel, K. et al. A matched-pair comparison of inlay and onlay trochlear designs for patellofemoral arthroplasty: no differences in clinical outcome but less progression of osteoarthritis with inlay designs. Knee Surg Sports Traumatol Arthrosc 25, 2784–2791 (2017). https://doi.org/10.1007/s00167-015-3733-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-015-3733-2

Keywords

Navigation