Skip to main content
Log in

Zoledronic acid in children with osteogenesis imperfecta and Bruck syndrome: a 2-year prospective observational study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Treatment with zoledronic acid (ZA) over 2 years, among 33 children with osteogenesis imperfecta (OI) and five Bruck syndrome cases, showed reduction in fracture rates, pain, and improvement in bone mineral density (BMD) and motor milestones of development. This is the first study reporting the use of bisphosphonates in patients with Bruck syndrome (BS).

Introduction

OI and BS are genetic disorders that result in bone fragility and reduced BMD. There is little literature describing the efficacy and safety of ZA in this population. In this study, we assess the response to treatment with ZA at six monthly intervals in Egyptian children with OI and BS for a period of 2 years.

Methods

Thirty-three patients with OI and five patients with BS were treated with 0.1 mg/kg ZA intravenously every 6 months for 2 years during which they were followed up using different parameters. A clinical severity score (CSS) was applied to the patients before and 2 years after the start of therapy. Comparison of disease severity and response to ZA treatment between autosomal-dominant (AD) and autosomal-recessive (AR) OI patients was also done.

Results

After 6 months of treatment, OI and BS patients showed a significant increase in BMD Z-scores (P < 0.003 in the spine and P < 0.004 in the hip), together with a significant drop in fracture rate (P < 0.001), relief of pain (P < 0.001), and improvement in ambulation (P < 0.001). CSS was significantly reduced after 2 years of treatment in both OI and BS patients. AR-OI patients were more severely affected than AD-OI patients and showed more significant improvement.

Conclusion

Zoledronic acid proved to be safe and effective in the treatment of OI and BS. The biannual infusion protocol was convenient to patients. There was a positive correlation between disease severity and benefits of the treatment. The use of the CSS proved to be of value in the assessment of the degree of severity in OI, and with some modifications, it was a valuable tool for the assessment of response to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ben Amor IM, Glorieux FH, Rauch F (2011) Genotype-phenotype correlations in autosomal dominant osteogenesis imperfecta. J Osteoporos 2011:540178

    PubMed  PubMed Central  Google Scholar 

  2. Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E (2012) First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact 12:183–188

    PubMed  CAS  Google Scholar 

  3. Alanay Y, Avaygan H, Camacho N, Utine G, Boduroglu K, Aktas D, Alikasifoglu M, Tuncbilek E, Orhan D, Bakar FT, Zabel B, Superti-Furga A, Bruckner-Tuderman L, Curry CJ, Pyott S, Byers PH, Eyre DR, Baldridge D, Lee B, Merrill AE, Davis EC, Cohn DH, Akarsu N, Krakow D (2010) Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 86:551–559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman J, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1in autosomal recessive osteogenesis imperfecta. Am J Hum Genet 88:362–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft CJ, Bulas DI, Kozma C, Smith PA, Eyre DR, Marini JC (2007) Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 39:359–365 (Erratum: Nat Genet. (2008)40: 927)

    Article  PubMed  CAS  Google Scholar 

  6. Van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PGJ, Piersma SR, Fratantoni SA, Jimenez CR, Huizer M, Morsman AC, Cobben JM, van Roij MHH, EltingMW VJI, Wijnaendts LC, Shaw NJ, HoglerW MKC, Sistermans EA, Dalton A, Meijers-Heijboer H, Pals G (2009) PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85:521–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S et al (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86:389–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, Lee G, Kim HN, Lee HR, Eom HH, Lee ZH, Kim OH, Park WY, Park SS, Ikegawa S, Yoo WJ, Choi IH, Kim JW (2012) A single recurrent mutation in the 5-prime UTR of IFITM5 causes osteogenesis imperfecta type V. Am J Hum Genet 91:343–348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lapunzina P, Aglan M, Temtamy S, Caparrós-Martín JA, Valencia M, Letón R, Martínez-Glez V, Elhossini R, Amr K, Vilaboa N, Ruiz-Perez VL (2010) Identification of a frameshift mutation in osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87:110–114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, Giunta C, Lapunzina P, Ruiz-Perez VL (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33:343–350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Puig-Hervás MT, Temtamy S, Aglan M, Valencia M, Martínez-Glez V, Ballesta-Martínez MJ, López-González V, Ashour AM, Amr K, Pulido V, Guillén-Navarro E, Lapunzina P, Caparrós-Martín JA, Ruiz-Perez VL (2012) Mutations in PLOD2 cause autosomal recessive connective tissue disorders within the Bruck syndrome-osteogenesis imperfecta phenotypic spectrum. Hum Mutat 33:1444–1449

    Article  PubMed  CAS  Google Scholar 

  12. Pyott SM, Tran TT, Leistritz DF, Pepn MG, Mendelsohn NJ, Temme RT, Fernandez BA, Elsayed SM, Elsobky E, Verma I, Nair S, Turner EH, Smith JD, Jarvik GP, Byers PH (2013) WNT1 mutations in families affected by moderately severe and progressive recessive osteogenesis imperfecta. Am J Hum Genet 92:590–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet 155A:943–968

    Article  PubMed  CAS  Google Scholar 

  14. Sillence DO, Senn A, Danks DM (1979) Genetic heterogenicity in osteogenesis imperfecta. J Med Genet 16:101–116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. OMIM: Online Mendelian Inheritance in Man.(2015) McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD), and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD). Home page at: http://www.ncbi.nlm.nih.gov/omim.

  16. Aglan MS, Hosny L, El-Houssini R, Abdelhadi S, Salem F, Awad SA, Zaki ME, ElBanna RAS, Temtamy SA (2012) A scoring system for assessment of severity in osteogenesis imperfecta. J Child Orthop 6:29–35

    Article  PubMed  PubMed Central  Google Scholar 

  17. Byers PH, Pyott SM (2012) Recessively inherited forms of osteogenesis imperfecta. Annu Rev Genet 46:475–497

    Article  PubMed  CAS  Google Scholar 

  18. Bank RA, Robins SP, Wijmenga C, Breslau-Siderius LJ, Bardoel AF, Van der Sluijs HA et al (1999) Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci 96:1054–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ha-Vinh R, Alanay Y, Bank RA et al (2004) Phenotypic and molecular characterization of Bruck syndrome (osteogenesis imperfecta with contractures of the large joints) caused by a recessive mutation in PLOD2. Am J Med Genet A 131:115–120

    Article  PubMed  Google Scholar 

  20. Kelley BP, Malfait F, Bonafe L, Baldridge D, Homan E et al (2011) Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res 26:666–672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Shaheen R, Al-Owain M, Faqeih E, Al-Hashmi N, Awaji A, Al-Zayed Z et al (2011) Mutations in FKBP10 cause both Bruck syndrome and isolated osteogenesis imperfecta in humans. Am J Med Genet A 155:1448–1452

    Article  CAS  Google Scholar 

  22. Setijowati ED, van Dijk FS, Cobben JM, van Rijn RR, Sistermans EA et al (2012) A novel homozygous 5 bp deletion in FKBP10 causes clinically Bruck syndrome in an Indonesian patient. Eur J Med Genet 55:17–21

    Article  PubMed  CAS  Google Scholar 

  23. Caparrós-Martin JA, Valencia M, Pulido V, Martínez-Glez V, Rueda-Arenas I et al (2013) Clinical and molecular analysis in families with autosomal recessive osteogenesis imperfecta identifies mutations in five genes and suggests genotype-phenotype correlations. Am J Med Genet A 161:1354–1369

    Article  CAS  Google Scholar 

  24. Shapiro JR (2010) Inherited and related disorders of bone matrix synthesis in men. In: Orwoll E, Bilezikian J, Vanderschueren D (eds) Osteoporosis in men, 2nd edn. Academic, San Diego, pp 505–522

    Chapter  Google Scholar 

  25. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R (1998) Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 339:947–952

    Article  PubMed  CAS  Google Scholar 

  26. Choi JH, Shin YL, Yoo HW (2007) Short-term efficacy of monthly pamidronate infusion in patients with osteogenesis imperfecta. J Korean Med Sci 22:209–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Barros ER, Saraiva GL, de Oliveira TP, Lazaretti-Castro M (2012) Safety and efficacy of a 1-year treatment with zoledronic acid compared with pamidronate in children with osteogenesis imperfect. J Pediatr Endocrinol Metab 25:485–491

    Article  PubMed  CAS  Google Scholar 

  28. Cundy T (2012) Recent advances in osteogenesis imperfecta. Calcif Tissue Int 90:439–449

    Article  PubMed  CAS  Google Scholar 

  29. Vuorimies I, Toiviainen-Salo S, Hero M, Makitie O (2011) Zoledronic acid treatment in children with osteogenesis imperfecta. Horm Res Paediatr 75:346–353

    Article  PubMed  CAS  Google Scholar 

  30. Bachrach LK, Ward LM (2009) Clinical review 1: bisphosphonate use in childhood osteoporosis. J Clin Endocrinol Metab 94:400–409

    Article  PubMed  CAS  Google Scholar 

  31. SPSS 18.0: SPSS Inc. Released (2009). PASW Statistics for Windows, Chicago

  32. Keupp K, Beleggia F, Kayserili H, Barnes AM, Steiner M, Semler O, Fischer B, Yigit G, Janda CY, Becker J, Breer S, Altunoglu U, Grünhagen J, Krawitz P, Hecht J, Schinke T, Makareeva E, Lausch E, Cankaya T, Caparrós-Martín JA, Lapunzina P, Temtamy S, Aglan M, Zabel B, Eysel P, Koerber F, Leikin S, Garcia KC, Netzer C, Schönau E, Ruiz-Perez VL, Mundlos S, Amling M, Kornak U, Marini J, Wollnik B (2013) Mutations in WNT1 cause different forms of bone fragility. Am J Hum Genet 92:565–574

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Salari SP, Abdollahi M, Larijani B (2011) Current, new and future treatments of osteoporosis. Rheumatol Int 31:289–300

    Article  CAS  Google Scholar 

  34. Cheung MS, Cheung FH (2008) Osteogenesis imperfecta: update on presentation and management. Rev Endocr Metab Disord 9:153–160

    Article  PubMed  Google Scholar 

  35. Rauch F, Glorieux FH (2004) Osteogenesis imperfecta. Lancet 363:1377–1385

    Article  PubMed  CAS  Google Scholar 

  36. El-Sobky MA, Hanna AA, Basha NE, Tarraf YN, Said MH (2006) Surgery versus surgery plus pamidronate in the management of osteogenesis imperfecta patients: a comparative study. J Pediatr Orthop B 15:222–228

    Article  PubMed  Google Scholar 

  37. Rauch F (2014) Bisphosphonate treatment and related agents in children. In Shapiro JR, Byers PH, Glorieux FH and Sponsellor PD (eds). Osteogenesis imperfecta. San Diego. 501–507

  38. Munns CF, Rajab MH, Hong J, Briody J, Hogler W, McQuade M, Little DG, Cowell CT (2007) Acute phase response and mineral status following low dose intravenous zoledronic acid in children. Bone 41:366–370

    Article  PubMed  CAS  Google Scholar 

  39. Brown JJ, Zacharin MR (2009) Safety and efficacy of intravenous zoledronic acid in paediatric osteoporosis. J Pediatr Endocrinol Metab 22:55–63

    Article  PubMed  CAS  Google Scholar 

  40. Panigrahi I, Das RR, Sharda S, Marwaha RK, Khandelwal N (2010) Response to zolendronic acid in children with type III osteogenesis imperfecta. J Bone Miner Res 28:451–455

    Article  CAS  Google Scholar 

  41. Lowing K, Astrom E, Oscarsson KA, Soderhall S, Eliasson AC (2007) Effect of intravenous pamidronate therapy on everyday activities in children with osteogenesis imperfecta. Acta Paediatr 96:1180–1183

    Article  PubMed  Google Scholar 

  42. Salehpour S, Tavakkoli S (2010) Cyclic pamidronate therapy in children with osteogenesis imperfecta. J Pediatr Endocrinol Metab 23:73–80

    Article  PubMed  CAS  Google Scholar 

  43. Zeitlin L, Fassier F, Glorieux FH (2003) Modern approach to children with osteogenesis imperfecta. J Pediatr Orthop B 12:77–87

    PubMed  Google Scholar 

  44. Heino TJ, Astrom E, Laurencikas E, Savendahl L, Soderhall S (2011) Intravenous pamidronate treatment improves growth in prepubertal osteogenesis imperfecta patients. Horm Res Paediatr 75:354–361

    Article  PubMed  CAS  Google Scholar 

  45. Lin CH, Chien YH, Peng SF, Tsai WY, Tung YC, Lee CT, Chien CC, Hwu WL, Lee NC (2014) Cyclic pamidronate infusion for neonatal-onset osteogenesis imperfecta. Pediatr Neonatol 55:306–311

    Article  PubMed  Google Scholar 

  46. Glorieux FH (2007) Experience with bisphosphonates in osteogenesis imperfecta. Pediatrics 119:163–165

    Article  Google Scholar 

  47. Land C, Rauch F, Travers R, Glorieux FH (2007) Osteogenesis imperfect type VI in childhood and adolescence: effects of cyclical intravenous pamidronate treatment. Bone 40:638–644

    Article  PubMed  CAS  Google Scholar 

  48. Shapiro JR, Sponsellor PD (2009) Osteogenesis imperfect: questions and answers. Curr Opin Pediatr 21:709–716

    Article  PubMed  Google Scholar 

  49. Arikoski P, Silverwood B, Tillmann V, Bishop NJ (2004) Intravenous pamidronate treatment in children with moderate to severe osteogenesis imperfecta: assessment of indices of dual-energy X-ray absorptiometry and bone metabolic markers during the first year of therapy. Bone 34:539–546

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank all patients and their families who participated in this study. We are grateful to the National Society of Human Genetics, NRC, Cairo, Egypt for providing the bisphosphonate treatment for most included patients who were not able to afford the expenses.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Otaify.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otaify, G.A., Aglan, M.S., Ibrahim, M.M. et al. Zoledronic acid in children with osteogenesis imperfecta and Bruck syndrome: a 2-year prospective observational study. Osteoporos Int 27, 81–92 (2016). https://doi.org/10.1007/s00198-015-3216-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-015-3216-9

Keywords

Navigation