Skip to main content

Advertisement

Log in

Congenital spine anomalies: the closed spinal dysraphisms

  • Advances in Pediatric Neuroradiology
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

The term congenital spinal anomalies encompasses a wide variety of dysmorphology that occurs during early development. Familiarity with current terminology and a practical, clinico–radiologic classification system allows the radiologist to have a more complete understanding of malformations of the spine and improves accuracy of diagnosis when these entities are encountered in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tortori-Donati P, Rossi A, Cama A (2000) Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology 42:471–491

    Article  CAS  PubMed  Google Scholar 

  2. Rossi A, Gandolfo C, Morana G et al (2006) Current classification and imaging of congenital spinal abnormalities. Semin Roentgenol 41:250–273

    Article  PubMed  Google Scholar 

  3. Warder DE (2001) Tethered cord syndrome and occult spinal dysraphism. Neurosurg Focus 10, e1

    Article  CAS  PubMed  Google Scholar 

  4. Drolet B (1998) Birthmarks to worry about. Cutaneous markers of dysraphism. Dermatol Clin 16:447–453

    Article  CAS  PubMed  Google Scholar 

  5. French BN (1983) The embryology of spinal dysraphism. Clin Neurosurg 30:295–340

    CAS  PubMed  Google Scholar 

  6. Warder DE, Oakes WJ (1993) Tethered cord syndrome and the conus in a normal position. Neurosurgery 33:374–378

    Article  CAS  PubMed  Google Scholar 

  7. Warder DE, Oakes WJ (1994) Tethered cord syndrome: the low-lying and normally positioned conus. Neurosurgery 34:597–600

    Article  CAS  PubMed  Google Scholar 

  8. Herman JM, McLone DG, Storrs BB et al (1993) Analysis of 153 patients with myelomeningocele or spinal lipoma reoperated upon for a tethered cord. Pediatr Neurosurg 19:243–249

    Article  CAS  PubMed  Google Scholar 

  9. McLone DG, Dias MS (1991) Complications of myelomeningocele closure. Pediatr Neurosurg 17:267–273

    Article  PubMed  Google Scholar 

  10. Scott RM, Wolpert SM, Bartoshesky LF et al (1986) Dermoid tumors occurring at the site of previous myelomeningocele repair. J Neurosurg 65:779–783

    Article  CAS  PubMed  Google Scholar 

  11. Naidich TP, McLone DG, Mutleur S (1983) A new understanding of dorsal dysraphism with lipoma (lipomyeloschisis): radiological evaluation and surgical correction. AJNR Am J Neuroradiol 4:103–116

    Google Scholar 

  12. Knittle JL, Timmers K, Ginsberg-Fellner F et al (1979) The growth of adipose tissue in children and adolescents. Cross-sectional and longitudinal studies of adipose cell number and size. J Clin Invest 63:239–246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Smith NM, Chambers HM, Furness ME et al (1992) The OEIS complex omphalocele-exstrophy-imperforate anus-spinal defects: recurrence in sibs. J Med Genet 29:730–732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Rossi A, Piatelli G, Gandolfo C et al (2006) Spectrum of nonterminal myelocystoceles. Neurosurgery 58:509–515

    Article  PubMed  Google Scholar 

  15. Tortori-Donati P, Cama A, Rosa ML et al (1990) Occult spinal dysraphism: neuroradiological study. Neuroradiology 31:512–522

    Article  CAS  PubMed  Google Scholar 

  16. Raghavan N, Barkovich AJ, Edwards M et al (1989) MR imaging in the tethered spinal cord syndrome. AJNR Am J Neuroradiol 10:27–36

    Google Scholar 

  17. Brown E, Matthes JC, Bazan C 3rd et al (1994) Prevalence of incidental intraspinal lipoma of the lumbosacral spine as determined by MRI. Spine 19:833–836

    Article  CAS  PubMed  Google Scholar 

  18. Uchino A, Mori T, Ohno M (1991) Thickened fatty filum terminale: MR imaging. Neuroradiology 33:331–333

    Article  CAS  PubMed  Google Scholar 

  19. Yundt KD, Park TS, Kaufman BA (1997) Normal diameter of filum terminale in children: in vivo measurement. Pediatr Neurosurg 27:257–259

    Article  CAS  PubMed  Google Scholar 

  20. Scotti G, Harwood-Nash DC (1980) Congenital thoracic dermal sinus: diagnosis by computer assisted metrizamide myelography. J Comput Assist Tomogr 4:675–677

    Article  CAS  PubMed  Google Scholar 

  21. Barkovich AJ, Edwards MS, Cogen PH (1991) MR evaluation of spinal dermal sinus tracts in children. AJNR Am J Neuroradiol 12:123–129

    CAS  PubMed  Google Scholar 

  22. Elton S, Oakes WJ (2001) Dermal sinus tracts of the spine. Neurosurg Focus 10, e4

    Article  CAS  PubMed  Google Scholar 

  23. Coleman LT, Zimmerman RA, Rorke LB (1985) Ventriculus terminalis of the conus medullaris: MR findings in children. AJNR Am J Neuroradiol 16:1421–1426

    Google Scholar 

  24. Pang D, Dias MS, Ahab-Barmada M (1992) Split cord malformation. Part I: a unified theory of embryogenesis for double spinal cord malformations. Neurosurgery 31:451–480

    Article  CAS  PubMed  Google Scholar 

  25. Pang D (1992) Split cord malformation. Part II: clinical syndrome. Neurosurgery 31:481–500

    Article  CAS  PubMed  Google Scholar 

  26. Tortori-Donati P, Rossi A, Biancheri R et al (2005) Congenital malformations of the spine and spinal cord. In: Tortori-Donati P (ed) Pediatric neuroradiology. Springer, Berlin, pp 1551–1608

    Chapter  Google Scholar 

  27. Duhamel B (1961) From the mermaid to anal imperforation: the syndrome of caudal regression. Arch Dis Child 36:152–155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Currarino G, Coln D, Votteler T (1981) Triad of anorectal, sacral, and presacral anomalies. AJR Am J Roentgenol 137:395–398

    Article  CAS  PubMed  Google Scholar 

  29. Dias MS, Azizkhan RG (1998) A novel embryogenetic mechanism for Currarino’s triad: inadequate dorsoventral separation of the caudal eminence from hindgut endoderm. Pediatr Neurosurg 28:223–229

    Article  CAS  PubMed  Google Scholar 

  30. Gudinchet F, Maeder P, Laurent T et al (1997) Magnetic resonance detection of myelodysplasia in children with Currarino triad. Pediatr Radiol 27:903–907

    Article  CAS  PubMed  Google Scholar 

  31. Nievelstein RAJ, Valk J, Smit LME et al (1994) MR of the caudal regression syndrome: embryologic implications. AJNR Am J Neuroradiol 15:1021–1029

    CAS  PubMed  Google Scholar 

  32. Pang D (1993) Sacral agenesis and caudal spinal cord malformations. Neurosurgery 32:755–779

    Article  CAS  PubMed  Google Scholar 

  33. Barkovich AJ, Raghavan N, Chuang SH (1989) MR of lumbosacral agenesis. AJNR Am J Neuroradiol 10:1223–1231

    CAS  PubMed  Google Scholar 

  34. Tortori-Donati P, Fondelli MP, Rossi A et al (1999) Segmental spinal dysgenesis. Neuroradiologic findings with clinical and embryologic correlation. AJNR Am J Neuroradiol 20:445–456

    CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

The authors have no financial interests, investigational or off-label uses to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erin Simon Schwartz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, E.S., Rossi, A. Congenital spine anomalies: the closed spinal dysraphisms. Pediatr Radiol 45 (Suppl 3), 413–419 (2015). https://doi.org/10.1007/s00247-015-3425-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-015-3425-6

Keywords

Navigation