Skip to main content
Log in

Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

In this paper, the viscoelastic mechanical properties of vaginal tissue are investigated. Using previous results of the authors on the mechanical properties of biological soft tissues and newly experimental data from uniaxial tension tests, a new model for the viscoelastic mechanical properties of the human vaginal tissue is proposed. The structural model seems to be sufficiently accurate to guarantee its application to prediction of reliable stress distributions, and is suitable for finite element computations. The obtained results may be helpful in the design of surgical procedures with autologous tissue or prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afonso J et al. (2008) Mechanical properties of polypropylene mesh used in pelvic floor repair. Int Urogynecol J 19: 375–380

    Article  Google Scholar 

  • Barber MD (2005) Symptoms and outcome measures of pelvic organ prolapse. Clin Obstet Gynecol 48: 648–661

    Article  Google Scholar 

  • Bonifasi-Lista C et al. (2005) Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. J Orthopaed Res 23: 67–76

    Article  Google Scholar 

  • Boukerrou MCELM et al. (2004) A biomechanical study of the strength of vaginal tissues: results on 16 post-menopausal patients presenting with genital prolapse. Eur J Obstet Gynecol Reprod Biol 112: 201–205

    Article  Google Scholar 

  • Calvo B et al. (2009) On modelling damage process in vaginal tissue. J Biomech 42: 642–651

    Article  MathSciNet  Google Scholar 

  • Epstein L et al. (2007) Systemic and vaginal biomechanical properties of women with normal vaginal support and pelvic organ prolapse. Am J Obstet Gynecol 197(2): 165.e1–165.e6

    Article  Google Scholar 

  • Epstein L et al. (2008) Impact of sacral colpopexy on in vivo vaginal biomechanical properties. Am J Obstet Gynecol 199(6): 664.e1–664.e6

    Article  Google Scholar 

  • Ettema GJC et al. (1998) A new method to measure elastic properties of plastic-viscoelastic connective tissue. Med Eng Phys 20(4): 308–314

    Article  Google Scholar 

  • Fu X et al. (1995) Viscoelastic properties and muscular function of the human anterior vaginal wall. Int Urogynecol J 6: 229–234

    Article  Google Scholar 

  • Fung YC (1993a) Biomechanics. Mechanical propeties of living tissues. chap. 7, 2nd edn. Springer, Berlin

    Google Scholar 

  • Fung YC (1993b) Biomechanics. Mechanical propeties of living tissues. Springer, Berlin

    Google Scholar 

  • Goh J (2002) Biomechanical and biochemical assessments for pelvic organ prolapse. Curr Opin Obstet Gynecol 15: 391–394

    Google Scholar 

  • Grashow JS et al. (2006) Biaixal stress–stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann Biomed Eng 34: 315–325

    Article  Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, New York

    MATH  Google Scholar 

  • Holzapfel GA, Ogden RW (2008) On planar biaxial tests for anisotropic nonlinearly elastic solids. a continuum mechanical framework. Math Mech Solids. doi:10.1177/1081286507084411 (in press)

  • Humphrey JD (1995) Mechanics of the arterial wall: review and directions. Crit Rev Biomed Eng 23: 1–162

    Google Scholar 

  • Janda S (2006) Biomechanics of the pelvic floor musculature. Dissertation, TUD Technische Universiteit Delft

  • Jelovsek J et al. (2007) Pelvic organ prolapse. Lancet 369: 1027–1038

    Article  Google Scholar 

  • Junqueira LC, Carneiro J (2007) Basic histology, 11th edn. McGraw-Hill, NY

    Google Scholar 

  • Kenton K, Mueller E (2006) The global burden of female pelvic floor disorders. BJU Int 98: 1–5

    Article  Google Scholar 

  • Kleuter B et al. (2007) Generalized parameter identification for finite viscoelasticity. Comput Methods Appl Mech Eng 196(35–36): 3315–3334

    Article  MATH  MathSciNet  Google Scholar 

  • Lally C et al. (2004) Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann Biomed Eng 32: 1355–1364

    Article  Google Scholar 

  • Lei L et al. (2007) Biomechanical properties of prolapsed vaginal tissue in pre- and postmenopausal women. In Urogynecol J 18: 603–607

    Article  Google Scholar 

  • Lukacz ES et al. (2006) Parity, mode of delivery, and pelvic floor disorders. Obstet Gynecol 107: 1253–1260

    Google Scholar 

  • Mahnken R, Stein E (1996) A unified approach for parameter identification of inelastic material models in the frame of the finite element method. Comput Methods Appl Mech Eng 136(3–4): 225–258

    Article  MATH  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. Siam J Appl Math 11: 431–441

    Article  MATH  MathSciNet  Google Scholar 

  • Martins P et al. (2009) Prediction of nonlinear elastic behavior of vaginal tissue: experimental results and model formulation (in press)

  • Merodio J, Goicolea JM (2007) On thermodynamically consistent constitutive equations for fiber-reinforced nonlinearly viscoelastic solids with apllication to biomechanics. Mech Res Commun 34: 561–571

    Article  MathSciNet  Google Scholar 

  • Neymeyer J et al. (2007) Laboratory testing of suburethral mesh slings: a comparison of their static and dynamic properties. Int Urogynecol J 18: S111

    Article  Google Scholar 

  • Ning X et al. (2006) A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. ASME J Biomech Eng 128: 925–933

    Article  Google Scholar 

  • Parente M et al. (2008) Deformation of the pelvic floor muscles during a vaginal delivery. Int Urogynecol J 19: 65–71

    Article  MathSciNet  Google Scholar 

  • Peña E et al. (2007a) An anisotropic visco-hyperelastic model for ligaments at finite strains: Formulation and computational aspects. Int J Solids Struct 44: 760–778

    Article  MATH  Google Scholar 

  • Peña E et al. (2007b) Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch Comput Method Eng 14(1): 47–91

    Article  MATH  Google Scholar 

  • Peña E et al. (2008) On modelling nonlinear viscoelastic effects in ligaments. J Biomech 41: 2659–2666

    Article  Google Scholar 

  • Petros PP (2007) The female pelvic floor: function, dysfunction and management according to the integral theory, 2nd edn. Springer, Berlin

    Google Scholar 

  • Purslow P et al. (1998) Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. J Exp Biol 201: 135–142

    Google Scholar 

  • Rubod C et al. (2007) Biomechanical properties of vaginal tissue, Part 1: new experimental protocol. J Urol 178(1): 320–325

    Article  Google Scholar 

  • Rubod C et al. (2008) Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J 19: 811–816

    Article  Google Scholar 

  • Simo JC (1987) On a fully three-dimensional finite-strain viscoelastic damage model: formulation and computational aspects. Comput Methods Appl Mech Eng 60: 153–173

    Article  MATH  MathSciNet  Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational Inelasticity. Springer, New York

    MATH  Google Scholar 

  • Simo JC, Taylor RL (1991) Quasi-incompresible finite elasticity in principal stretches. Continuum Basis and Numerical Algorithms. Comput Methods Appl Mech Eng 85: 273–310

    Article  MATH  MathSciNet  Google Scholar 

  • Spencer AJM (1954) Theory of invariants. In: Continuum physics. Academic, New York, pp 239–253

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estefania Peña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peña, E., Calvo, B., Martínez, M.A. et al. Experimental study and constitutive modeling of the viscoelastic mechanical properties of the human prolapsed vaginal tissue. Biomech Model Mechanobiol 9, 35–44 (2010). https://doi.org/10.1007/s10237-009-0157-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-009-0157-2

Keywords

Navigation