Skip to main content

Advertisement

Log in

Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Gadolinium-based contrast agents are widely used to enhance image contrast in magnetic resonance imaging (MRI) procedures. Over recent years, there has been a renewed interest in the physicochemical properties of gadolinium chelates used as contrast agents for MRI procedures, as it has been suggested that dechelation of these molecules could be involved in the mechanism of a recently described disease, namely nephrogenic systemic fibrosis (NSF). The aim of this paper is to discuss the structure-physicochemical properties relationships of marketed gadolinium chelates in regards to their biological consequences. Marketed gadolinium chelates can be classified according to key molecular design parameters: (a) nature of the chelating moiety: macrocyclic molecules in which Gd3+ is caged in the pre-organized cavity of the ligand, or linear open-chain molecules, (b) ionicity: the ionicity of the complex varies from neutral to tri-anionic agents, and (c) the presence or absence of an aromatic lipophilic residue responsible for protein binding. All these molecular characteristics have a profound impact on the physicochemical characteristics of the pharmaceutical solution such as osmolality, viscosity but also on their efficiency in relaxing water protons (relaxivity) and their biodistribution. These key molecular parameters can also explain why gadolinium chelates differ in terms of their thermodynamic stability constants and kinetic stability, as demonstrated by numerous in vitro and in vivo studies, resulting in various formulations of pharmaceutical solutions of marketed contrast agents. The concept of kinetic and thermodynamic stability is critically discussed as it remains a somewhat controversial topic, especially in predicting the amount of free gadolinium which may result from dechelation of chelates in physiological or pathological situations. A high kinetic stability provided by the macrocyclic structure combined with a high thermodynamic stability (reinforced by ionicity for macrocyclic chelates) will minimize the amount of free gadolinium released in tissue parenchymas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adzamli K, Periasamy MP, Spiller M, Koenig SH (1999) NMRD assessment of Gd-DTPA-bis(methoxyethylamide), (Gd-DTPA-BMEA), a nonionic MRI agent. Invest Radiol 34:410–414

    Article  PubMed  CAS  Google Scholar 

  • Bellin MF, Vasile M, Morel-Precetti S (2003) Currently used non-specific extracellular MR contrast media. Eur Radiol 13:2688–2698

    Article  PubMed  CAS  Google Scholar 

  • Benmelouka M, Van Tol J, Borel A, Port M, Helm L, Brunel LC, Merbach AE (2006) A high-frequency EPR study of frozen solutions of Gd(III) complexes: straightforward determination of the zero-field splitting parameters and simulation of the NMRD profiles. J Am Chem Soc 128:7807–7816

    Article  PubMed  CAS  Google Scholar 

  • Bianchi A, Calabi L, Foresti M, Losi P, Palaeri L, Rodriguez A, Valtancoli B (1999) Interaction of ATP with a Gd3+ complex employed as paramagnetic contrast agent in NMR imaging. Inorganica Chim Acta 288:244–248

    Article  CAS  Google Scholar 

  • Bianchi A, Calabi L, Giorgi C, Losi P, Mariani P, Paoli P, Rossi P, Valtancoli B, Virtuani M (2000) Thermodynamic and structural properties of Gd3+ complexes with functionalized macrocyclic ligands based upon 1,4,7,10-tetraazacyclododecane. J Chem Soc Dalton Trans 697–705

  • Bousquet JC, Saini S, Stark DD, Hahn PF, Nigam M, Wittenberg J, Ferrucci JT (1988) Gd-DOTA: characterization of a new paramagnetic complex. Radiology 166:693–698

    PubMed  CAS  Google Scholar 

  • Broome DR, Cottrell AC, Kanal E (2007) Response to “Will dialysis prevent the development of nephrogenic systemic fibrosis after gadolinium-based contrast administration?”. Am J Roentgenol 189:W234–W235

    Article  Google Scholar 

  • Brücher E (2002) Kinetic stability of gadolinium (III) chelates used as MRI contrast agents. Top Curr Chem 221:103–122

    Article  Google Scholar 

  • Brücher E, Sherry AD (2001) Stability and toxicity of contrast agents. In: Merbach AE, Toth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, New York

    Google Scholar 

  • Bussi S, Fouillet X, Morisetti A (2007) Toxicological assessment of gadolinium release from contrast media. Exp Toxicol Pathol 58:323–330

    Article  PubMed  CAS  Google Scholar 

  • Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn Reson Imaging 8:467–481

    Article  PubMed  CAS  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  PubMed  CAS  Google Scholar 

  • Caravan P, Comuzzi C, Crooks W, McMurry TJ, Choppin GR, Woulfe SR (2001) Thermodynamic stability and kinetic inertness of MS325, a new blood pool agent for magnetic resonance imaging. Inorg Chem 40:2170–2176

    Article  PubMed  CAS  Google Scholar 

  • Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, Amedio JC, Looby RJ, Supkowski RM, Horrocks WD, McMurry TJ, Lauffer RB (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 27;124:3152–3162

    Article  CAS  Google Scholar 

  • Cavagna FM, Maggioni F, Castelli PM, Dapra M, Imperatori LG, Lorusso V, Jenkins BG (1997) Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32:780–796

    Article  PubMed  CAS  Google Scholar 

  • Chang CA (1991) Lanthanide magnetic resonance imaging contrast agents: thermodynamic, kinetic, and structural properties of lanthanide (III) macrocyclic complexes. Eur J Solid State Inorg Chem 28:237–244

    CAS  Google Scholar 

  • Chang CA (1993) Magnetic resonance imaging contrast agents design and physicochemical properties of gadodiamide. Invest Radiol 28(suppl 1):S21–S27

    PubMed  CAS  Google Scholar 

  • Chang CA, Sieving PF, Watson AD, Dewey TM, Karpishin TB, Raymond KN (1992) Ionic versus nonionic MR imaging contrast media: operational definitions. J Magn Reson Imaging 2:95–98

    Article  PubMed  CAS  Google Scholar 

  • Cohan RH, Leder RA, Herzberg AJ, Hedlund LW, Wheeler CT, Beam CA, Nadel SN, Dunnick NR (1991) Extravascular toxicity of two magnetic resonance contrast agents. Preliminary experience in the rat. Invest Radiol 26:224–226

    Article  PubMed  CAS  Google Scholar 

  • Corot C, Idée JM, Hentsch AM, Santus R, Mallet C, Goulas V, Bonnemain B, Meyer D (1998) Structure-activity relationship of macrocyclic and linear gadolinium chelates: investigation of transmetallation effect on the zinc-dependent metallopeptidase angiotensin-converting enzyme. J Magn Reson Imaging 8:695–702

    Article  PubMed  CAS  Google Scholar 

  • Corot C, Violas X, Robert P, Gagneur G, Port M (2003) Comparison of different types of blood pool agents (P792, MS325, USPIO) in a rabbit MR angiography-like protocol. Invest Radiol 38:311–319

    Article  PubMed  CAS  Google Scholar 

  • Cowper SE, Boyer PJ (2006) Nephrogenic systemic fibrosis: an update. Curr Rheumatol Rep 8:151–157

    Article  PubMed  Google Scholar 

  • Cowper SE, Robin HS, Steinberg SM, Su LD, Gupta S, LeBoit PE (2000) Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 356:1000–1001

    Article  PubMed  CAS  Google Scholar 

  • De Haen C, Cabrini M, Akhnana L, Ratti D, Calabi L, Gozzini L (1999) Gadobenate dimeglumine 0.5 M solution for injection (MultiHance) pharmaceutical formulation and physicochemical properties of a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23(Suppl 1):S161–S168

    PubMed  Google Scholar 

  • Desreux JF (1980) Nuclear magnetic resonance spectroscopy of lanthanide complexes with a tetraacetic tetraaza macrocycle. Unusual conformation properties. Inorg Chem 19:1319–1324

    Article  CAS  Google Scholar 

  • Desreux JF, Barthelemy PP (1988) Highly stable lanthanide macrocyclic complexes: in search of new contrast agents for NMR imaging. Nucl Med Biol 1:9–15

    Google Scholar 

  • Dharnidharka VR, Wesson SK, Fennell RS (2006) Gadolinium and nephrogenic fibrosing dermopathy in pediatric patients. Pediatr Nephrol 22:1395

    Article  PubMed  Google Scholar 

  • Evans CH (1990) Biochemistry of the lanthanides. Plenum Press, London

    Google Scholar 

  • Evenepoel P, Zeegers M, Segaert S, Claes K, Kuypers D, Maes B, Flamen P, Fransis S, Vanrenterghem Y (2004) Nephrogenic fibrosing dermopathy: a novel, disabling disorder in patients with renal failure. Nephrol Dial Transplant 19:469–473

    Article  PubMed  Google Scholar 

  • Fossheim R, Dugstat H, Dahl G (1991) Structure-stability relashionships of Gd(III) ion complexes for magnetic resonance imaging. J Med Chem 34:819–826

    Article  PubMed  CAS  Google Scholar 

  • Galan A, Cowper SE, Bucala R (2006) Nephrogenic systemic fibrosis (nephrogenic fibrosing dermopathy). Curr Opin Rheumatol 18:614–617

    Article  PubMed  Google Scholar 

  • Gibby WA, Gibby KA, Gibby WA (2004) Comparison of Gd-DTPA-BMA (Omniscan) versus Gd-HP-DO3A (ProHance) retention in human bone tissue by inductively coupled plasma atomic emission spectroscopy. Invest Radiol 39:138–142

    Article  PubMed  Google Scholar 

  • Gries H, Miklautz H (1984) Some physicochemical properties of gadolinium-DTPA complex, a contrast agent for IRM. Physiol Chem Phys Med NMR 16:105–112

    PubMed  CAS  Google Scholar 

  • Grobner T (2006) Gadolinium: a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108

    Article  PubMed  CAS  Google Scholar 

  • Harrison A, Walker CA, Pereira KA, Parker D, Royle L, Pulukkody K, Norman TJ (1993) Hepato-biliary and renal excretion in mice of charged and neutral gadolinium complexes of cyclic tetra-aza-phosphinic and carboxylic acids. Magn Reson Imaging 11:761–770

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim MA, Haughton VM, Hyde JS (1994) Enhancement of intervertebral disks with gadolinium complexes: comparison of an ionic and a nonionic medium in an animal model. AJNR Am J Neuroradiol 15:1907–1910

    PubMed  CAS  Google Scholar 

  • Idée JM, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20:563–576

    Article  PubMed  CAS  Google Scholar 

  • Inigo P, Campistol JM, Lario S, Piera C, Campos B, Bescos M, Oppenheimer F, Rivera F (2001) Effects of losartan and amlodipine on intrarenal hemodynamics and TGF-beta(1) plasma levels in a crossover trial in renal transplant recipients. J Am Soc Nephrol 12:822–827

    PubMed  CAS  Google Scholar 

  • Itoh N, Kawakita M (1984) Characterization of Gd3+ and Tb3+ binding sites on Ca2+, Mg2+-adenosine triphosphatase of sarcoplasmic reticulum. Tokyo J Biochem 95:661–669

    CAS  Google Scholar 

  • Jackson GE, Wynchank S, Woudenberg M (1990) Gadolinium(III) complex equilibria: the implications for Gd(III) MRI contrast agents. Magn Reson Med 16:57–66

    Article  PubMed  CAS  Google Scholar 

  • Joffe P, Thomsen HS, Meusel M (1998) Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Acad Radiol 5:491–502

    Article  PubMed  CAS  Google Scholar 

  • Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, Froelich JW, Gilk T, Gimbel JR, Gosbee J, Kuhni-Kaminski E, Lester JW Jr, Nyenhuis J, Parag Y, Schaefer DJ, Sebek-Scoumis EA, Weinreb J, Zaremba LA, Wilcox P, Lucey L, Sass N (2007) ACR guidance document for safe MR practices. Am J Roentgenol 188:1–27

    Article  Google Scholar 

  • Khanna A, Kapur S, Sharma VK, Li B, Suthanthiran M (1997) In vivo hyperexpression of transforming growth-factor-beta 1 in mice: stimulation by cyclosporine. Transplantation 63:1037–1039

    Article  PubMed  CAS  Google Scholar 

  • Kimura J, Ishiguchi T, Matsuda J, Ohno R, Nakamura A, Kamei S, Ohno K, Kawamura T, Murata K (2005) Human comparative study of zinc and copper excretion via urine after administration of magnetic resonance imaging contrast agents. Rad Med 23:322–326

    Google Scholar 

  • Kumar K (1997) Macrocyclic polyamino carboxylate complexes of Gd(III) as magnetic resonance imaging contrast agents. J Alloys Comp 249:163–172

    Article  CAS  Google Scholar 

  • Kumar K, Tweedle MF (1993) Macrocyclic polyaminocarboxylate complexes of lanthanides as magnetic resonance imaging contrast agents. Pure Appl Chem 65:515–520

    Article  CAS  Google Scholar 

  • Kumar K, Chang CA, Tweedle MF (1993) Equilibrium and kinetic studies of lanthanide complexes of macrocyclic polyamino carboxylates. Inorg Chem 32:587–593

    Article  CAS  Google Scholar 

  • Kumar K, Jin T, Wang X, Desreux JF, Tweedle MF (1994) Effect of ligand basicity on the formation and dissociation equilibria and kinetics of Gd3+ complexes of macrocyclic polyamino carboxylates. Inorg Chem 33:3823–3829

    Article  CAS  Google Scholar 

  • Kumar K, Tweedle MF, Malley MF, Gougoutas JZ (1995) Synthesis, stability, and crystal structure studies of some Ca2+, Cu2+, and Zn2+ complexes of macrocyclic polyamino carboxylates. Inorg Chem 34:6472–6480

    Article  CAS  Google Scholar 

  • Laurent S, Vander Elst L, Copoix F, Muller RN (2001) Stability of MRI paramagnetic contrast media. A proton relaxometric protocol for transmetallation assessment. Invest Radiol 36:115–122

    Article  PubMed  CAS  Google Scholar 

  • Laurent S, Vander Elst L, Muller RN (2006) Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Media Mol Imaging 1:128–137

    Article  PubMed  CAS  Google Scholar 

  • Lorusso V, Arbughi T, Tirone P, de Haen C (1999) Pharmacokinetics and tissue distribution in animals of gadobenate ion, the magnetic resonance imaging contrast enhancing component of gadobenate dimeglumine 0.5 M solution for injection (MultiHance). J Comput Assist Tomogr 23(Suppl 1):S181–S194

    PubMed  Google Scholar 

  • Mackay-Wiggan JM, Cohen DJ, Hardy MA et al. (2003) Nephrogenic fibrosing dermopathy (scleromyxoedema-like illness of renal disease). J Am Acad Dermatol 48:55–60

    Article  PubMed  Google Scholar 

  • Magerstät M, Gansow OT, Brechiel MW, Colcher D, Baltzer L, Knop RH, Girton ME, Naegle M (1986) GdDOTA: an alternative to GdDTPA as T1,2 relaxation agent for NMR imaging or spectroscopy. Magn Reson Imaging 3:808–812

    Google Scholar 

  • Mann JS (1993) Stability of gadolinium complexes in vitro and in vivo. J Comput Assist Tomogr 17(suppl 1):S19–S23

    PubMed  Google Scholar 

  • Marckmann P, Skov L, Rossen K, Dupont A, Damholt MB, Heaf JG, Thomsen HS (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17:2359–2362

    Article  PubMed  Google Scholar 

  • McMurry TJ, Pippin CG, Wu C, Deal KA, Brechbiel MW, Mirzadeh S, Gansow OA (1998) Physical parameters and biological stability of yttrium(III) diethylenetriaminepentaacetic acid derivative conjugates. J Med Chem 27;41:3546–3549

    Article  Google Scholar 

  • Mendoza FA, Artlett CM, Sandorfi N, Latinis K, Piera-Velazquez S, Jimenez SA (2006) Description of 12 cases of nephrogenic fibrosing dermopathy and review of the literature. Semin Arthritis Rheum 35:238–249

    Article  PubMed  Google Scholar 

  • Meyer D, Schaefer M, Bonnemain B (1988) Gd-DOTA, a potential MRI contrast agent. Current status of physicochemical knowledge. Invest Radiol 23:S232–S235

    Article  PubMed  CAS  Google Scholar 

  • Morcos SK (2007a) Nephrogenic systemic fibrosis following the administration of extracellular gadolinium-based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition ? Br J Radiol 80:73–76

    Article  PubMed  CAS  Google Scholar 

  • Morcos SK (2007b) Reply to Schmitt-Willich and Tweedle MF. Br J Radiol 80:584–585

    Article  Google Scholar 

  • Moreau J, Guillon E, Pierrard JC, Rimbault J, Port M, Aplincourt M (2004) Complexing mechanism of the lanthanide cations Eu3+, Gd3+, and Tb3+ with1,4,7,10–tetrakis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (dota)-characterization of three successive complexing phases: study of the thermodynamic and structural properties of the complexes by potentiometry, luminescence spectroscopy, and EXAFS. Eur J Chem 10:5218–5232

    Article  CAS  Google Scholar 

  • Muller RN, Radüchel B, Laurent S, Platzek J, Piérart C, Mareski P, Vander Elst L (1999) Physicochemical characterization of MS-325, a new gadolinium complex, by multinuclear relaxometry. Eur J Inorg Chem 11:1949–1955

    Article  Google Scholar 

  • Okazaki O, Kurata T, Yoshioka N, Hakusui H (1996) Pharmacokinetics and stability of caldiamide sodium in rats. Arzneimittelforschung 46:79–83

    PubMed  CAS  Google Scholar 

  • Perazella MA (2007) Nephrogenic systemic fibrosis, kidney disease and gadolinium: is there a link? Clin J Am Soc Nephrol 2:200–202

    Article  PubMed  CAS  Google Scholar 

  • Pollet R, Marx D (2007) Ab initio simulation of a gadolinium-based magnetic resonance imaging contrast agent in aqueous solution. J Chem Phys 14:126:181102

    Article  CAS  Google Scholar 

  • Port M, Corot C, Violas X, Robert P, Raynal I, Gagneur G (2005) How to compare the efficiency of albumin-bound and nonalbumin-bound contrast agents in vivo: the concept of dynamic relaxivity. Invest Radiol 40(9):565–573

    Article  PubMed  CAS  Google Scholar 

  • Port M, Idée JM, Medina C, Dencausse A, Corot C (2008) Stability of gadolinium chelates and their biological consequences: new data and some comments. Br J Radiol 81:258–259

    Article  PubMed  CAS  Google Scholar 

  • Pulukkody KP, Norman TJ, Parker D, Royle L, Broan CJ (1993) Synthesis of charged and uncharged complexes of gadolinium and yttrium with cyclic polyazaphosphinic acid ligands for in vivo applications. J Chem Soc Perkin Trans 2:605–620

    Google Scholar 

  • Puttagunta NR, Gibby WA, Puttagunta VL (1996a) Comparative transmetallation kinetics and thermodynamic stability of gadolinium-DTPA bis-glucosamide and other magnetic resonance imaging contrast media. Invest Radiol 10:619–624

    Article  Google Scholar 

  • Puttagunta NR, Gibby WA, Smith GT (1996b) Human in vivo comparative study of zinc and copper transmetallation after administration of magnetic resonance imaging contrast agents. Invest Radiol 31:739–742

    Article  PubMed  CAS  Google Scholar 

  • Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724

    Article  PubMed  Google Scholar 

  • Rothermel GL, Rizkalla EN, Choppin GR (1997) The kinetic of exchange between a lanthanide ion and the gadolinium complex of N,N″-bis(2-methoxyethylamide-carbamoylmethyl)-diethylenetriamine-N,N′,N″-triacetate. Inorganic Chim Acta 262:133–138

    Article  CAS  Google Scholar 

  • Sarka L, Burai L, Brücher E (2000) The rates of the exchange reactions between [Gd(DTPA)]2− and the endogenous ions Cu2+ and Zn2+: a kinetic model for the prediction of the in vivo stability of [Gd(DTPA)]2−, used as a contrast agent in magnetic resonance imaging. Chem Eur J 6(4):719–724

    Article  CAS  Google Scholar 

  • Sarka L, Burai L, Kiraly R, Zekany L, Brücher E (2002) Studies on the kinetic stabilities of the Gd(3+) complexes formed with theN-mono(methylamide), N′-mono(methylamide) and N,N″-bis(methylamide) derivativesof diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid. J Inorg Biochem 25;91:320–326

    Article  Google Scholar 

  • Schmitt-Willich H (2007) Stability of linear and macrocyclic gadolinium based contrast agents. Br J Radiol 80:581–582

    Article  PubMed  CAS  Google Scholar 

  • Schmitt-Willich H, Brehm M, Ewers CL, Michl G, Müller-Fahrnow A, Petrov O, Platzek J, Radüchel B, Sülzle D (1999) Synthesis and physicochemical characterization of a new gadolinium chelate: the liver-specific magnetic resonance imaging contrast agent Gd-EOB-DTPA. Inorg Chem 22;38:1134–1144

    Article  Google Scholar 

  • Spinazzi A, Lorusso V, Pirovano G, Kirchin M (1999) Safety, tolerance, biodistribution, and MR imaging enhancement of the liver with gadobenate dimeglumine: results of clinical pharmacologic and pilot imaging studies in nonpatient and patient volunteers. Acad Radiol 6:282–291

    Article  PubMed  CAS  Google Scholar 

  • Steger-Hartmann T, Graham PB, Müller S, Schweinfurth H (2006) Preclinical safety assessment of Vasovist (Gadofosveset trisodium), a new magnetic resonance imaging contrast agent for angiography. Invest Radiol 41:449–459

    Article  PubMed  Google Scholar 

  • Swaminathan S, Ahmed I, McCarthy JT, Albright RC, Pittelkow MR, Caplice NM, Griffin MD, Leung N (2006) Nephrogenic fibrosing dermopathy and high-dose erythropoietin therapy. Ann Intern Med 145:234–235

    PubMed  Google Scholar 

  • Thakral C, Alhariri J, Abraham JL (2007) Long-term retention of gadolinium in tissues from nephrogenic systemic fibrosis patient after multiple gadolinium-enhanced MRI scans: case report and implications. Contrast Media Mol Imaging 2(4):199–205

    Article  PubMed  CAS  Google Scholar 

  • Ting WW, Seabury Stone M, Madison KC, Kurtz K (2003) Nephrogenic fibrosing dermopathy with systemic involvement. Arch Dermatol 139:903–906

    Article  PubMed  Google Scholar 

  • Toth E, Brücher E, Lazar I, Toth I (1994) Kinetics of formation and dissociation of lanthanide(III)-DOTA complexes. Inorg Chem 33:4070–4076

    Article  CAS  Google Scholar 

  • Toth E, Kiraly R, Platzek J, Radüchel B, Brücher E (1996) Equilibrium and kinetic studies on complexes of 10-[2,3-dihydroxy-(1-hydroxymethyl)-propyl]-1,4,7,10-tetraazacyclododecane-1,4,7-triacetate. Inorganica Acta 249:191–199

    Article  CAS  Google Scholar 

  • Tweedle MF (1992) Physicochemical properties of gadoteridol and other magnetic resonance contrast agents. Invest Radiol 27(Suppl 1):S2–S6

    PubMed  Google Scholar 

  • Tweedle MF (2007) “Stability” of gadolinium chelates. Br J Radiol 80:583–584

    Article  PubMed  CAS  Google Scholar 

  • Tweedle MF, Eaton SM, Eckelman WC, Gaughan GT, Hagan JJ, Wedeking P, Yost FJ (1988) Comparative chemical structure and pharmacokinetics of MRI contrast agents. Invest Radiol 23:S236–S239

    Article  PubMed  CAS  Google Scholar 

  • Tweedle MF, Hagan JJ, Kumar K, Mantha S, Chang CA (1991) Reaction of gadolinium chelates with endogenously available ions. Magn Reson Imaging 9:409–415

    Article  PubMed  CAS  Google Scholar 

  • Tweedle MF, Wedeking P, Kumar K (1995) Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Invest Radiol 30:372–380

    Article  PubMed  CAS  Google Scholar 

  • Uggeri F, Aime S, Anelli PL, Botta M, Brocchetta M, de Haën C, Ermondi G, Grandi M, Paoli P (1995) Novel contrast agents for magnetic resonance imaging. Synthesis and characterization of the ligand BOPTA and its Ln(III) complexes (Ln = Gd, La, Lu). X-ray structure of disodium (TPS-9–145337286-C-S)-[4-Carboxy-5,8,11-tris(carboxymethyl)-1-phenyl-2-oxa-5,8,11-triazatridecan-13-oato(5-)]gadolinate(2-) in a mixture with its enantiomer. Inorg Chem 34:633–642

    Article  CAS  Google Scholar 

  • Vander Elst L, Van Haverbeke Y, Goudemant JF, Muller RN (1994) Stability assessment of gadolinium complexes by P-31 and H-1 relaxometry. Magn Reson Med 31:437–444

    Article  PubMed  CAS  Google Scholar 

  • Vander Elst L, Maton F, Laurent S, Seghi F, Chapelle F, Muller RN (1997) A multinuclear MR study of Gd-EOB-DTPA: comprehensive preclinical characterization of an organ specific MRI contrast agent. Magn Reson Med 38(4):604–614

    Article  PubMed  CAS  Google Scholar 

  • Vander Elst L, Chapelle F, Laurent S, Muller RN (2001) Stereospecific binding of MRI contrast agents to human serum albumin: the case of Gd-(S)-EOB-DTPA (Eovist) and its (R) isomer. J Biol Inorg Chem 6:196–200

    Article  PubMed  CAS  Google Scholar 

  • Varadarajan JA, Crofts SP, Carvalho JF, Fellmann JD, Kim SH, Chang CA, Watson AD (1994) The synthesis and evaluation of macrocyclic gadolinium-DTPA-bis(amide) complexes as magnetic resonance imaging contrast agents. Invest Radiol 29(Suppl 2):S18–S20

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Jin T, Comblin V, Lopez-Mut A, Merciny E, Desreux JF (1992) A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium (III) polyaza polycarboxylic MRI contrast agent. Inorg Chem 31:1095–1099

    Article  CAS  Google Scholar 

  • Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relationship to chemical characteristics. Magn Reson Imaging 10:641–648

    Article  PubMed  CAS  Google Scholar 

  • Wedeking P, Tweedle M (1988) Comparison of the biodistribution of 153Gd-labeled, Gd(DTPA)2-, Gd(DOTA)- and Gd(acetate)n in mice. Nucl Med Biol 15:395–402

    CAS  Google Scholar 

  • White DH, de Learie LA, Moore DA, Wallace RA, Dunn TJ, Cacheris WP, Imura H, Choppin GR (1991) The thermodynamics of complexation of lanthanide (III) DTPA-bisamide complexes and their implication for stability and solution structure. Invest Radiol 26(suppl 1):S226–S228

    PubMed  CAS  Google Scholar 

  • White GW, Gibby WA, Tweedle MF (2006) Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled mass spectroscopy. Invest Radiol 41:272–278

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors thank Prof. R.N. Muller and his group for the experimental data shown in Fig. 2 concerning Gd-BT-DO3A, Gd-DTPA, Gd-BOPTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Port.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Port, M., Idée, JM., Medina, C. et al. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review. Biometals 21, 469–490 (2008). https://doi.org/10.1007/s10534-008-9135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-008-9135-x

Keywords

Navigation