Skip to main content

Advertisement

Log in

Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers

  • META-ANALYSIS
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Coffee consumption has been associated with decreased mortality in previous studies. As aging, obesity, and lifestyle factors affect the risk of mortality, the association between coffee and mortality needs to be examined in various subpopulations by characteristics of subjects. To quantitatively assess this association, we conducted an updated meta-analysis including stratified analyses by potential modifiers. We searched in the PubMed and Web of Science databases through March 8, 2019, and conducted meta-analysis including linear and non-linear dose–response analyses. We identified 40 studies including 3,852,651 subjects and 450,256 all-cause and cause-specific deaths. Non-linear inverse associations between coffee consumption and mortality from all-causes, cardiovascular disease (CVD), and cancers were found. The lowest relative risk (RR) was at intakes of 3.5 cups/day for all-cause mortality (RR = 0.85, 95% CI 0.82–0.89), 2.5 cups/day for CVD mortality (RR = 0.83, 95% CI 0.80–0.87), and 2 cups/day for cancer mortality (RR = 0.96, 95% CI 0.94–0.99), while additional intakes were not associated with further lower mortality. An inverse association between coffee consumption and all-cause mortality was maintained irrespective of age, overweight status, alcohol drinking, smoking status, and caffeine content of coffee. By region, Europe and Asia showed stronger inverse associations than US. A non-linear inverse association was found for mortality from respiratory disease and diabetes, while linear inverse association was found for mortality from non-CVD, non-cancer causes. Moderate coffee consumption (e.g. 2–4 cups/day) was associated with reduced all-cause and cause-specific mortality, compared to no coffee consumption. The inverse association between coffee and all-cause mortality was consistent by potential modifiers except region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jeszka-Skowron M, Zgola-Grzeskowiak A, Grzeskowiak T. Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. Eur Food Res Technol. 2015;240(1):19–31.

    Article  CAS  Google Scholar 

  2. Noordzij M, Uiterwaal CS, Arends LR, Kok FJ, Grobbee DE, Geleijnse JM. Blood pressure response to chronic intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens. 2005;23(5):921–8.

    Article  CAS  PubMed  Google Scholar 

  3. Hong X, Xu Q, Lan K, Huang H, Zhang Y, Chen S, et al. The effect of daily fluid management and beverages consumption on the risk of bladder cancer: a meta-analysis of observational study. Nutr Cancer. 2018;1:1–11. https://doi.org/10.1080/01635581.2018.1512636.

    Article  CAS  Google Scholar 

  4. Wu W, Tong Y, Zhao Q, Yu G, Wei X, Lu Q. Coffee consumption and bladder cancer: a meta-analysis of observational studies. Sci Rep. 2015;5:9051. https://doi.org/10.1038/srep09051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Loomis D, Guyton KZ, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, et al. Carcinogenicity of drinking coffee, mate, and very hot beverages. Lancet Oncol. 2016;17(7):877–8. https://doi.org/10.1016/S1470-2045(16)30239-X.

    Article  PubMed  Google Scholar 

  6. Grosso G, Godos J, Galvano F, Giovannucci EL. Coffee, caffeine, and health outcomes: an umbrella review. Annu Rev Nutr. 2017;37:131–56. https://doi.org/10.1146/annurev-nutr-071816-064941.

    Article  CAS  PubMed  Google Scholar 

  7. Andersen LF, Jacobs DR Jr, Carlsen MH, Blomhoff R. Consumption of coffee is associated with reduced risk of death attributed to inflammatory and cardiovascular diseases in the Iowa Women’s Health Study. Am J Clin Nutr. 2006;83(5):1039–46.

    Article  CAS  PubMed  Google Scholar 

  8. Ding M, Satija A, Bhupathiraju SN, Hu Y, Sun Q, Han J, et al. Association of coffee consumption with total and cause-specific mortality in 3 large prospective cohorts. Circulation. 2015;132(24):2305–15. https://doi.org/10.1161/CIRCULATIONAHA.115.017341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freedman ND, Park Y, Abnet CC, Hollenbeck AR, Sinha R. Association of coffee drinking with total and cause-specific mortality. N Engl J Med. 2012;366(20):1891–904. https://doi.org/10.1056/NEJMoa1112010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gapstur SM, Anderson RL, Campbell PT, Jacobs EJ, Hartman TJ, Hildebrand JS, et al. Associations of coffee drinking and cancer mortality in the cancer prevention study-II. Cancer Epidemiol Biomark Prev. 2017;26(10):1477–86. https://doi.org/10.1158/1055-9965.EPI-17-0353.

    Article  CAS  Google Scholar 

  11. Gardener H, Rundek T, Wright CB, Elkind MS, Sacco RL. Coffee and tea consumption are inversely associated with mortality in a multiethnic urban population. J Nutr. 2013;143(8):1299–308. https://doi.org/10.3945/jn.112.173807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grosso G, Stepaniak U, Micek A, Stefler D, Bobak M, Pajak A. Coffee consumption and mortality in three Eastern European countries: results from the HAPIEE (Health, Alcohol and Psychosocial factors In Eastern Europe) study. Public Health Nutr. 2017;20(1):82–91. https://doi.org/10.1017/S1368980016001749.

    Article  PubMed  Google Scholar 

  13. Gunter MJ, Murphy N, Cross AJ, Dossus L, Dartois L, Fagherazzi G, et al. Coffee drinking and mortality in 10 European Countries: a multinational cohort study. Ann Intern Med. 2017;167(4):236–47. https://doi.org/10.7326/M16-2945.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Happonen P, Laara E, Hiltunen L, Luukinen H. Coffee consumption and mortality in a 14-year follow-up of an elderly northern Finnish population. Br J Nutr. 2008;99(6):1354–61. https://doi.org/10.1017/S0007114507871650.

    Article  CAS  PubMed  Google Scholar 

  15. Hart C, Smith GD. Coffee consumption and coronary heart disease mortality in Scottish men: a 21 year follow up study. J Epidemiol Community Health. 1997;51(4):461–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Iwai N, Ohshiro H, Kurozawa Y, Hosoda T, Morita H, Funakawa K, et al. Relationship between coffee and green tea consumption and all-cause mortality in a cohort of a rural Japanese population. J Epidemiol. 2002;12(3):191–8.

    Article  PubMed  Google Scholar 

  17. Jacobsen BK, Bjelke E, Kvale G, Heuch I. Coffee drinking, mortality, and cancer incidence: results from a Norwegian prospective study. J Natl Cancer Inst. 1986;76(5):823–31.

    CAS  PubMed  Google Scholar 

  18. Jazbec A, Simic D, Corovic N, Durakovic Z, Pavlovic M. Impact of coffee and other selected factors on general mortality and mortality due to cardiovascular disease in Croatia. J Health Popul Nutr. 2003;21(4):332–40.

    PubMed  Google Scholar 

  19. Kahn HA, Phillips RL, Snowdon DA, Choi W. Association between reported diet and all-cause mortality. Twenty-one-year follow-up on 27,530 adult Seventh-Day Adventists. Am J Epidemiol. 1984;119(5):775–87.

    Article  CAS  PubMed  Google Scholar 

  20. Klatsky AL, Armstrong MA, Friedman GD. Coffee, tea, and mortality. Ann Epidemiol. 1993;3(4):375–81.

    Article  CAS  PubMed  Google Scholar 

  21. Kleemola P, Jousilahti P, Pietinen P, Vartiainen E, Tuomilehto J. Coffee consumption and the risk of coronary heart disease and death. Arch Intern Med. 2000;160(22):3393–400.

    Article  CAS  PubMed  Google Scholar 

  22. LeGrady D, Dyer AR, Shekelle RB, Stamler J, Liu K, Paul O, et al. Coffee consumption and mortality in the Chicago Western Electric Company Study. Am J Epidemiol. 1987;126(5):803–12.

    Article  CAS  PubMed  Google Scholar 

  23. Lim WH, Wong G, Lewis JR, Lok CE, Polkinghorne KR, Hodgson J, et al. Total volume and composition of fluid intake and mortality in older women: a cohort study. BMJ Open. 2017;7(3):e011720. https://doi.org/10.1136/bmjopen-2016-011720.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lindsted KD, Kuzma JW, Anderson JL. Coffee consumption and cause-specific mortality. Association with age at death and compression of mortality. J Clin Epidemiol. 1992;45(7):733–42.

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Sui X, Lavie CJ, Hebert JR, Earnest CP, Zhang J, et al. Association of coffee consumption with all-cause and cardiovascular disease mortality. Mayo Clin Proc. 2013;88(10):1066–74. https://doi.org/10.1016/j.mayocp.2013.06.020.

    Article  CAS  PubMed  Google Scholar 

  26. Lof M, Sandin S, Yin L, Adami HO, Weiderpass E. Prospective study of coffee consumption and all-cause, cancer, and cardiovascular mortality in Swedish women. Eur J Epidemiol. 2015;30(9):1027–34. https://doi.org/10.1007/s10654-015-0052-3.

    Article  CAS  PubMed  Google Scholar 

  27. Loftfield E, Freedman ND, Graubard BI, Guertin KA, Black A, Huang WY, et al. Association of coffee consumption with overall and cause-specific mortality in a large us prospective cohort study. Am J Epidemiol. 2015;182(12):1010–22. https://doi.org/10.1093/aje/kwv146.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Loomba RS, Aggarwal S, Arora RR. The effect of coffee and quantity of consumption on specific cardiovascular and all-cause mortality: coffee consumption does not affect mortality. Am J Ther. 2016;23(1):e232–7. https://doi.org/10.1097/MJT.0000000000000099.

    Article  PubMed  Google Scholar 

  29. Mineharu Y, Koizumi A, Wada Y, Iso H, Watanabe Y, Date C, et al. Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health. 2011;65(3):230–40. https://doi.org/10.1136/jech.2009.097311.

    Article  PubMed  Google Scholar 

  30. Nordestgaard AT, Nordestgaard BG. Coffee intake, cardiovascular disease and all-cause mortality: observational and Mendelian randomization analyses in 95 000-223 000 individuals. Int J Epidemiol. 2016;45(6):1938–52. https://doi.org/10.1093/ije/dyw325.

    Article  PubMed  Google Scholar 

  31. Odegaard AO, Koh WP, Yuan JM, Pereira MA. Beverage habits and mortality in Chinese adults. J Nutr. 2015;145(3):595–604. https://doi.org/10.3945/jn.114.200253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paganini-Hill A, Kawas CH, Corrada MM. Non-alcoholic beverage and caffeine consumption and mortality: the Leisure World Cohort Study. Prev Med. 2007;44(4):305–10. https://doi.org/10.1016/j.ypmed.2006.12.011.

    Article  PubMed  Google Scholar 

  33. Park SY, Freedman ND, Haiman CA, Le Marchand L, Wilkens LR, Setiawan VW. Association of coffee consumption with total and cause-specific mortality among nonwhite populations. Ann Intern Med. 2017;167(4):228–35. https://doi.org/10.7326/M16-2472.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosengren A, Wilhelmsen L. Coffee, coronary heart disease and mortality in middle-aged Swedish men: findings from the Primary Prevention Study. J Intern Med. 1991;230(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  35. Saito E, Inoue M, Sawada N, Shimazu T, Yamaji T, Iwasaki M, et al. Association of coffee intake with total and cause-specific mortality in a Japanese population: the Japan Public Health Center-based Prospective Study. Am J Clin Nutr. 2015;101(5):1029–37. https://doi.org/10.3945/ajcn.114.104273.

    Article  CAS  PubMed  Google Scholar 

  36. Sugiyama K, Kuriyama S, Akhter M, Kakizaki M, Nakaya N, Ohmori-Matsuda K, et al. Coffee consumption and mortality due to all causes, cardiovascular disease, and cancer in Japanese women. J Nutr. 2010;140(5):1007–13. https://doi.org/10.3945/jn.109.109314.

    Article  CAS  PubMed  Google Scholar 

  37. Tamakoshi A, Lin Y, Kawado M, Yagyu K, Kikuchi S, Iso H, et al. Effect of coffee consumption on all-cause and total cancer mortality: findings from the JACC study. Eur J Epidemiol. 2011;26(4):285–93. https://doi.org/10.1007/s10654-011-9548-7.

    Article  PubMed  Google Scholar 

  38. van den Brandt PA. Coffee or Tea? A prospective cohort study on the associations of coffee and tea intake with overall and cause-specific mortality in men versus women. Eur J Epidemiol. 2018. https://doi.org/10.1007/s10654-018-0359-y.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vandenbroucke JP, Kok FJ, van ‘t Bosch G, van den Dungen PJ, van der Heide-Wessel C, van der Heide RM. Coffee drinking and mortality in a 25-year follow up. Am J Epidemiol. 1986;123(2):359–61.

    Article  CAS  PubMed  Google Scholar 

  40. Woodward M, Tunstall-Pedoe H. Coffee and tea consumption in the Scottish Heart Health Study follow up: conflicting relations with coronary risk factors, coronary disease, and all cause mortality. J Epidemiol Community Health. 1999;53(8):481–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sado J, Kitamura T, Kitamura Y, Sobue T, Nishino Y, Tanaka H, et al. Association between coffee consumption and all-sites cancer incidence and mortality. Cancer Sci. 2017;108(10):2079–87. https://doi.org/10.1111/cas.13328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Torres-Collado L, Garcia-de-la-Hera M, Navarrete-Munoz EM, Notario-Barandiaran L, Gonzalez-Palacios S, Zurriaga O, et al. Coffee consumption and mortality from all causes of death, cardiovascular disease and cancer in an elderly Spanish population. Eur J Nutr. 2018. https://doi.org/10.1007/s00394-018-1796-9.

    Article  PubMed  Google Scholar 

  43. Loftfield E, Cornelis MC, Caporaso N, Yu K, Sinha R, Freedman N. Association of coffee drinking with mortality by genetic variation in caffeine metabolism: findings from the UK Biobank. JAMA Intern Med. 2018;178(8):1086–97. https://doi.org/10.1001/jamainternmed.2018.2425.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sado J, Kitamura T, Kitamura Y, Liu R, Ando E, Sobue T, et al. Coffee consumption and all-cause and cardiovascular mortality-Three-Prefecture Cohort in Japan. Circ J. 2019. https://doi.org/10.1253/circj.cj-18-0618.

    Article  PubMed  Google Scholar 

  45. Navarro AM, Martinez-Gonzalez MA, Gea A, Grosso G, Martin-Moreno JM, Lopez-Garcia E, et al. Coffee consumption and total mortality in a Mediterranean prospective cohort. Am J Clin Nutr. 2018;108(5):1113–20. https://doi.org/10.1093/ajcn/nqy198.

    Article  PubMed  Google Scholar 

  46. Kohlmeier L, Mensink G, Kohlmeier M. The relationship between coffee consumption and lipid levels in young and older people in the Heidelberg-Michelstadt-Berlin study. Eur Heart J. 1991;12(8):869–74.

    Article  CAS  PubMed  Google Scholar 

  47. Arciero PJ, Ormsbee MJ. Relationship of blood pressure, behavioral mood state, and physical activity following caffeine ingestion in younger and older women. Appl Physiol Nutr Metab. 2009;34(4):754–62. https://doi.org/10.1139/H09-068.

    Article  CAS  PubMed  Google Scholar 

  48. Bracco D, Ferrarra JM, Arnaud MJ, Jequier E, Schutz Y. Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women. Am J Physiol. 1995;269(4 Pt 1):E671–8. https://doi.org/10.1152/ajpendo.1995.269.4.E671.

    Article  CAS  PubMed  Google Scholar 

  49. Acheson KJ, Zahorska-Markiewicz B, Pittet P, Anantharaman K, Jequier E. Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr. 1980;33(5):989–97. https://doi.org/10.1093/ajcn/33.5.989.

    Article  CAS  PubMed  Google Scholar 

  50. Grosso G, Micek A, Godos J, Sciacca S, Pajak A, Martinez-Gonzalez MA, et al. Coffee consumption and risk of all-cause, cardiovascular, and cancer mortality in smokers and non-smokers: a dose-response meta-analysis. Eur J Epidemiol. 2016;31(12):1191–205. https://doi.org/10.1007/s10654-016-0202-2.

    Article  CAS  PubMed  Google Scholar 

  51. Je Y, Giovannucci E. Coffee consumption and total mortality: a meta-analysis of twenty prospective cohort studies. Br J Nutr. 2014;111(7):1162–73. https://doi.org/10.1017/S0007114513003814.

    Article  CAS  PubMed  Google Scholar 

  52. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283(15):2008–12.

    Article  CAS  PubMed  Google Scholar 

  53. Wells GA SB, O’Connell D. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analysis. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 2 May 2019.

  54. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  55. Berlin JA, Longnecker MP, Greenland S. Meta-analysis of epidemiologic dose-response data. Epidemiology. 1993;4(3):218–28.

    Article  CAS  PubMed  Google Scholar 

  56. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol. 1992;135(11):1301–9.

    Article  CAS  PubMed  Google Scholar 

  57. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. Stata J. 2006;6(1):40–57.

    Article  Google Scholar 

  58. Orsini N, Li R, Wolk A, Khudyakov P, Spiegelman D. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175(1):66–73. https://doi.org/10.1093/aje/kwr265.

    Article  PubMed  Google Scholar 

  59. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  PubMed  Google Scholar 

  60. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Crippa A, Discacciati A, Larsson SC, Wolk A, Orsini N. Coffee consumption and mortality from all causes, cardiovascular disease, and cancer: a dose-response meta-analysis. Am J Epidemiol. 2014;180(8):763–75. https://doi.org/10.1093/aje/kwu194.

    Article  PubMed  Google Scholar 

  62. Jiang X, Zhang D, Jiang W. Coffee and caffeine intake and incidence of type 2 diabetes mellitus: a meta-analysis of prospective studies. Eur J Nutr. 2014;53(1):25–38. https://doi.org/10.1007/s00394-013-0603-x.

    Article  CAS  PubMed  Google Scholar 

  63. Ding M, Bhupathiraju SN, Satija A, van Dam RM, Hu FB. Long-term coffee consumption and risk of cardiovascular disease: a systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2014;129(6):643–59. https://doi.org/10.1161/CIRCULATIONAHA.113.005925.

    Article  CAS  PubMed  Google Scholar 

  64. van Dam RM, Hu FB. Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA. 2005;294(1):97–104. https://doi.org/10.1001/jama.294.1.97.

    Article  PubMed  Google Scholar 

  65. Cornelis MC, Kacprowski T, Menni C, Gustafsson S, Pivin E, Adamski J, et al. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum Mol Genet. 2016;25(24):5472–82. https://doi.org/10.1093/hmg/ddw334.

    Article  CAS  PubMed  Google Scholar 

  66. Nightingale CM, Rudnicka AR, Owen CG, Wells JC, Sattar N, Cook DG, et al. Influence of adiposity on insulin resistance and glycemia markers among U.K. Children of South Asian, black African-Caribbean, and white European origin: child heart and health study in England. Diabetes Care. 2013;36(6):1712–9. https://doi.org/10.2337/dc12-1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Elsamadony A, Yates KF, Sweat V, Yau PL, Mangone A, Joseph A, et al. Asian adolescents with excess weight are at higher risk for insulin resistance than Non-Asian Peers. Obesity (Silver Spring). 2017;25(11):1974–9. https://doi.org/10.1002/oby.22003.

    Article  CAS  Google Scholar 

  68. Alfaro TM, Monteiro RA, Cunha RA, Cordeiro CR. Chronic coffee consumption and respiratory disease: a systematic review. Clin Respir J. 2018;12(3):1283–94. https://doi.org/10.1111/crj.12662.

    Article  PubMed  Google Scholar 

  69. Carlstrom M, Larsson SC. Coffee consumption and reduced risk of developing type 2 diabetes: a systematic review with meta-analysis. Nutr Rev. 2018;76(6):395–417. https://doi.org/10.1093/nutrit/nuy014.

    Article  PubMed  Google Scholar 

  70. Kang D, Kim Y, Je Y. Non-alcoholic beverage consumption and risk of depression: epidemiological evidence from observational studies. Eur J Clin Nutr. 2018;72(11):1506–16. https://doi.org/10.1038/s41430-018-0121-2.

    Article  PubMed  Google Scholar 

  71. Lucas M, O’Reilly EJ, Pan A, Mirzaei F, Willett WC, Okereke OI, et al. Coffee, caffeine, and risk of completed suicide: results from three prospective cohorts of American adults. World J Biol Psychiatry. 2014;15(5):377–86. https://doi.org/10.3109/15622975.2013.795243.

    Article  PubMed  Google Scholar 

  72. Schottker B, Saum KU, Jansen EH, Boffetta P, Trichopoulou A, Holleczek B, et al. Oxidative stress markers and all-cause mortality at older age: a population-based cohort study. J Gerontol A Biol Sci Med Sci. 2015;70(4):518–24. https://doi.org/10.1093/gerona/glu111.

    Article  CAS  PubMed  Google Scholar 

  73. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9. https://doi.org/10.1093/gerona/glu057.

    Article  PubMed  Google Scholar 

  74. Liang N, Kitts DD. Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules. 2014;19(11):19180–208. https://doi.org/10.3390/molecules191119180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoelzl C, Knasmuller S, Wagner KH, Elbling L, Huber W, Kager N, et al. Instant coffee with high chlorogenic acid levels protects humans against oxidative damage of macromolecules. Mol Nutr Food Res. 2010;54(12):1722–33. https://doi.org/10.1002/mnfr.201000048.

    Article  CAS  PubMed  Google Scholar 

  76. Natella F, Nardini M, Giannetti I, Dattilo C, Scaccini C. Coffee drinking influences plasma antioxidant capacity in humans. J Agric Food Chem. 2002;50(21):6211–6.

    Article  CAS  PubMed  Google Scholar 

  77. Misik M, Hoelzl C, Wagner KH, Cavin C, Moser B, Kundi M, et al. Impact of paper filtered coffee on oxidative DNA-damage: results of a clinical trial. Mutat Res. 2010;692(1–2):42–8. https://doi.org/10.1016/j.mrfmmm.2010.08.003.

    Article  CAS  PubMed  Google Scholar 

  78. Hori A, Kasai H, Kawai K, Nanri A, Sato M, Ohta M, et al. Coffee intake is associated with lower levels of oxidative DNA damage and decreasing body iron storage in healthy women. Nutr Cancer. 2014;66(6):964–9. https://doi.org/10.1080/01635581.2014.932398.

    Article  CAS  PubMed  Google Scholar 

  79. Williams CJ, Fargnoli JL, Hwang JJ, van Dam RM, Blackburn GL, Hu FB, et al. Coffee consumption is associated with higher plasma adiponectin concentrations in women with or without type 2 diabetes: a prospective cohort study. Diabetes Care. 2008;31(3):504–7. https://doi.org/10.2337/dc07-1952.

    Article  PubMed  Google Scholar 

  80. Zhang Y, Zhang DZ. Is coffee consumption associated with a lower level of serum C-reactive protein? A meta-analysis of observational studies. Int J Food Sci Nutr. 2018. https://doi.org/10.1080/09637486.2018.1433640.

    Article  PubMed  Google Scholar 

  81. Hang D, Kvaerner AS, Ma W, Hu Y, Tabung FK, Nan H, et al. Coffee consumption and plasma biomarkers of metabolic and inflammatory pathways in US health professionals. Am J Clin Nutr. 2019;109(3):635–47. https://doi.org/10.1093/ajcn/nqy295.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Kempf K, Herder C, Erlund I, Kolb H, Martin S, Carstensen M, et al. Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr. 2010;91(4):950–7. https://doi.org/10.3945/ajcn.2009.28548.

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Y, Zhang DZ. Associations of coffee consumption with circulating level of adiponectin and leptin. A meta-analysis of observational studies. Int J Food Sci Nutr. 2018. https://doi.org/10.1080/09637486.2018.1445202.

    Article  PubMed  Google Scholar 

  84. Li Q, Liu Y, Sun X, Yin Z, Li H, Cheng C, et al. Caffeinated and decaffeinated coffee consumption and risk of all-cause mortality: a dose-response meta-analysis of cohort studies. J Hum Nutr Diet. 2019. https://doi.org/10.1111/jhn.12633.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2017R1A6A3A01075728) and by the Ministry of Science, ICT and Future Planning (NRF-2018R1D1A1B07045353). Funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjin Je.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Je, Y. & Giovannucci, E. Coffee consumption and all-cause and cause-specific mortality: a meta-analysis by potential modifiers. Eur J Epidemiol 34, 731–752 (2019). https://doi.org/10.1007/s10654-019-00524-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-019-00524-3

Keywords

Navigation