Skip to main content

Advertisement

Log in

Modulation of Immune Function by Morphine: Implications for Susceptibility to Infection

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abbas A, Murphy KM, Sher A (1996) Functional diversity of helper T lymphocytes. Nature 383:787–793

    Article  PubMed  CAS  Google Scholar 

  • Alicea C, Belkowski S, Eisenstein TK, Adler MW, Rogers TJ (1996) Inhibition of primary murine macrophage cytokine production in vitro following treatment with the k-opioid agonist U50,488H. J Neuroimmunol 64:83–90

    Article  PubMed  CAS  Google Scholar 

  • Alonzo NC, Bayer BM (2002) Opioids, immunology, and host defenses of intravenous drug abusers. Infect Dis Clin North Am 16(3):553–569, Sep. Review

    Article  PubMed  Google Scholar 

  • Avidor-Reiss T, Bayewitch M, Levy R, Matus-Leibovitch N, Nevo I, Vogel Z (1995) Adenylylcyclase super-sensitization in mu-opioid receptor-transfected Chinese hamster ovary cells following chronic opioid treatment. J Biol Chem 270(50):29732–29738

    Article  PubMed  CAS  Google Scholar 

  • Avidor-Reiss T, Nevo I, Levy R, Pfeuffer T, Vogel Z (1996) Chronic opioid treatment induces adenylyl cyclase V superactivation: involvement of Gbg. J Biol Chem 271(35):21309–21315

    Article  PubMed  CAS  Google Scholar 

  • Bayer BM, Daussin S, Hernandez M, Irvin L (1990) Morphine inhibition of lymphocyte activity is mediated by an opioid dependent mechanism. Neuropharmacology 29:369–374

    Article  PubMed  CAS  Google Scholar 

  • Beagles K, Wellstein A, Bayer B (2004) Systemic morphine administration suppresses genes involved in antigen presentation. Mol Pharmacol 65(2):437–442

    Article  PubMed  CAS  Google Scholar 

  • Bhaskaran M, Reddy K, Sharma S, Singh J, Radhakrishnan N, Kapasi A, Singhal (2001) Morphine-induced degradation of the host defense barrier: role of macrophage injury. J Infect Dis 184(12):1524–1531

    Article  PubMed  CAS  Google Scholar 

  • Bhat RS, Bhaskaran M, Mongia A, Hitosugi N, Singhal PC (2004) Morphine-induced macrophage apoptosis: oxidative stress and strategies for modulation. J Leukoc Biol 75(6):1131–1138

    Article  PubMed  CAS  Google Scholar 

  • Bian TH, Wang XF, Li XY (1995) Effect of morphine on IL-1 and tumor necrosis factor alpha production from mouse peritoneal macrophages in vitro. Chung-Kuo Yao Li Hsueh Pao 16(5):449–451

    PubMed  CAS  Google Scholar 

  • Borner C, Kraus J, Schroder H, Ammer H, Hollt V (2004) Transcriptional regulation of the human mu-opioid receptor gene by interleukin-6. Mol Pharmacol 66(6):1719–1726

    Article  PubMed  CAS  Google Scholar 

  • Bryant HU, Roudebush RE (1990) Suppressive effects of morphine pellet implants on in vivo parameters of immune function. J Pharmacol Exp Ther 255:410–414

    PubMed  CAS  Google Scholar 

  • Bryant HU, Yoburn BC, Intrissi CE, Bernton EW, Holaday JW (1998) Immunosuppressive effects of chronic morphine treatment. Eur J Pharm 149:165–169

    Article  CAS  Google Scholar 

  • Bryant HU, Bernton EW, Kenner JR, Holaday JW (1991) Role of adrenal cortical activation in the immunosuppressive effects of chronic morphine treatment. Endocrinology 128:3253–3258

    PubMed  CAS  Google Scholar 

  • Bussiere JL, Adler MW, Rogers RJ, Eisenstein TK (1993) Cytokine reversal of morphine induced suppression of the Antibody response. J Pharmacol Exp Ther 264:591–597

    PubMed  CAS  Google Scholar 

  • Cantacuzene J (1898) Nouvelles recherches sur le monde de destruction des vibrions dans l'organisme. Ann Inst Pasteur 12:273–300

    Google Scholar 

  • Carr DJ, France CP (1993) Immune alterations in chronic morphine treated rhesus monkeys. Adv Exp Med Biol 335:35–39

    PubMed  CAS  Google Scholar 

  • Chao CC, Sharp BM, Pomeroy C, Filice GA, Peterson PK (1990) Lethality of morphine in mice infected with Toxoplasma gondii. J Pharmacol Exp Ther 252:605–609

    PubMed  CAS  Google Scholar 

  • Choi Y, Chuang LF, Lam KM, Kung H-F, Wang JM, Osburn BI, Chuang RY (1999) Inhibition of chemokine-induced chemotaxis of monkey leukocytes by mu-opioid receptor agonist. In Vivo 13:389–396

    PubMed  CAS  Google Scholar 

  • Chuang TK, Killam KF, Chuang LF, Kung H-F, Sheng WS, Chao CC, Yu L, Chuang RY (1995) Mu opioid receptor gene expression in immune cells. Biochem Biophys Res Commun 216:922–930

    Article  PubMed  CAS  Google Scholar 

  • Dinda A, Gitman M, Singhal PC (2005) Immunomodulatory effect of morphine: therapeutic implications. Expert Opin Drug Saf 4(4):669–675

    Article  PubMed  CAS  Google Scholar 

  • Fecho K, Dykstra LA, Lysle DT (1993) Evidence for β-adrenergic receptor involvement in the immunomodulatory effects of morphine. J Pharmacol Exp Ther 265:1079–1087

    PubMed  CAS  Google Scholar 

  • Fecho K, Maslonek KA, Coussons-Read ME, Dykstra LA, Lysle DT (1994) Macrophage-derived nitric oxide is involved in the depressed con A-responsiveness of splenic lymphocytes from rats administered morphine in vivo. J Immunol 152:5845–5852

    PubMed  CAS  Google Scholar 

  • Fecho K, Maslonek KA, Dykstra LA, Lysle DT (1996) Evidence for sympathetic and adrenal involvement in the immunomodulatory effects of acute morphine treatment in rats. J Pharmacol Exp Ther 277(2):633–645

    PubMed  CAS  Google Scholar 

  • Felten LR, Felten SY, Carlson SL, Olschowka JA, Livnat S (1985) Noradrenergic and peptidergic innervation of lymphoid tissue. J Immunol 135:755–765

    Google Scholar 

  • Flores LR, Hernandez MC, Bayer BM (1994) Acute immunosupressive effects of morphine: lack of involvement of pituitary and adrenal factors. J Pharmacol Exp Ther 268:1129–1134

    PubMed  CAS  Google Scholar 

  • Freier DO, Fuchs BA (1993) Morphine-induced alterations in thymocyte subpopulations of B6C3F1 mice. J Pharmacol Exp Ther 265:81–88

    PubMed  CAS  Google Scholar 

  • Friedman H, Eisenstein TK (2004) Neurological basis of drug dependence and its effects on the immune system. J Neuroimmunol 147(1–2):106–108

    Article  PubMed  CAS  Google Scholar 

  • Georges H, Leroy O, Vandenbussche C, Guery B, Alfandari S, Tronchon L, Beaucaire G (1999) Epidemiological features and prognosis of severe community-acquired pneumococcal pneumonia. Intensive Care Med 25:198

    Article  PubMed  CAS  Google Scholar 

  • Greeneltch KM, Haudenschild CC, Keegan AD, Shi Y (2004) The opioid antagonist naltrexone blocks acute endotoxic shock by inhibiting tumor necrosis factor-alpha production. Brain Behav Immun 18(5):476–484

    Article  PubMed  CAS  Google Scholar 

  • Grimm MC, Ben-Baruch A, Taub DD, Howard OM, Resau JH, Wang JM, Ali H, Richardson R, Snyderman R, Oppenheim JJ. Opiates transdeactivate chemokine receptors: delta and mu opiate receptor-mediated heterologous desensitization. J Exp Med 188(2):(20)

    Article  Google Scholar 

  • Guo CJ, Li Y, Tian S, Wang X, Douglas SD, Ho WZ (2002) Morphine enhances HIV infection of human blood mononuclear phagocytes through modulation of beta-chemokines and CCR5 receptor. J Investig Med 50(6):435–442

    Article  PubMed  CAS  Google Scholar 

  • Haverkos HW, Lange RW (1990) Serious infections other than human immunodeficiency virus among intravenous drug users. J Infect Dis 161:894–902

    PubMed  CAS  Google Scholar 

  • Hilburger ME, Adler MW, Truant AL, Meissler JJ Jr, Satishchandran V, Rogers TJ, Eisenstein TK (1997) Morphine induces sepsis in mice. J Infect Dis 176(1):183–188

    PubMed  CAS  Google Scholar 

  • House RV, Thomas PT, Bhargava HN (1995) In vitro evaluation of fentanyl and meperidine for immunomodulatory. Immunol Lett 46(1–2):117–124

    Article  PubMed  CAS  Google Scholar 

  • Hussey HH, Katz S (1950) Infections resulting from narcotic addiction. Am J Med 9:186–193

    Article  PubMed  CAS  Google Scholar 

  • Koff WC, Dunegon MA (1985) Modulation of macrophage-mediated tumoricidal activity by neuropeptides and neurohormones. J Immunol 135:350–354

    PubMed  CAS  Google Scholar 

  • Kowalski J (1998) Immunomodulatory action of class mu-, delta- and kappa-opioid receptor agonists in mice. Neuropeptides 32(4):301–306

    Article  PubMed  CAS  Google Scholar 

  • Kraus J, Borner C, Giannini E, Hickfang K, Braun H, Mayer P, Hoehe MR, Ambrosch A, Konig W, Hollt V (2001) Regulation of μ-opioid receptor gene transcription by interleukin-4 and influence of an allelic variation within a STAT6 transcription factor binding site. J Biol Chem 276:43901–43908

    Article  PubMed  CAS  Google Scholar 

  • Lanier LL (1995) Unusual lymphocytes T cells and NK cells. Immunologist 3:182–184

    CAS  Google Scholar 

  • Law PY, Wong YH, Loh HH (2000) Molecular mechanisms and regulation of opioid receptor signaling. Annu Rev Pharmacol Toxicol 40(1):389

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang X, Tian S, Guo CJ, Douglas SD, Ho WZ (2002) Methadone enhances human immunodeficiency virus infection of human immune cells. J Infect Dis 185(1):118–122

    Article  PubMed  CAS  Google Scholar 

  • Louria DB, Hensle T, Rose J (1974) The major medical complications of heroin addiction. Ann Int Med 67:1–22

    Google Scholar 

  • Lysle DT, Coussons ME, Watts VJ, Bennett EH, Dykstra LA (1993) Morphine-induced alterations of immune status: Dose dependency, compartment specificity and antagonism by naltrexone. J Pharmacol Exp Ther 265:1071–1078

    PubMed  CAS  Google Scholar 

  • Lysle DT, Hoffman KE, Dykstra LA (1996) Evidence for the involvement of the caudal region of the periaqueductal gray in a subset of morphine-induced alterations of immune status. J Pharmacol Exp Ther 277:1533–1540

    PubMed  CAS  Google Scholar 

  • Madden JJ, Donahue RM (1990) In: Watson RR (ed.) Opioid Binding to Cells of the Immune System in Drugs of Abuse and the Immune System. CRC Press, Boca Raton, FL, pp 212–224

    Google Scholar 

  • Makman MH, Dvorkin B, Stefano GB (1995) Murine macrophage cell lines contain μ3-opiate receptors. Eur J Pharm 273:5–6

    Article  Google Scholar 

  • McCarthy L, Szabo I, Nitsche JF, Pintar JE, Rogers TJ (2001) Expression of functional mu-opioid receptors during T cell development. J Neuroimmunol 114(1–2):(1)

    Article  PubMed  Google Scholar 

  • Mehrishi JN, Mills IH (1983) Opiate receptors on lymphocytes and platelets in man. Clin Immunol Immunopathol 27:240–249

    Article  PubMed  CAS  Google Scholar 

  • Mellon RD, Bayer BM (1998) Evidence for central opioid receptors in the immunomodulatory effects of morphine: review of potential mechanism(s) of action. J Neuroimmunol 83(1–2):19–28

    Article  PubMed  CAS  Google Scholar 

  • Mendolsohn L, Kerchner GA, Culwell M, Ades EW (1985) Immunoregulation by opiate peptides. Clin Lab Immunol 16:125–129

    Google Scholar 

  • Miyagi T, Chuang LF, Doi RH, Carlos MP, Torres JV, Chuang RY (2000a) Morphine induces gene expression of CCR5 in human CEM 174 lymphocytes. J Biol Chem 275:31305–31310

    Article  PubMed  CAS  Google Scholar 

  • Miyagi T, Chuang LF, Lam KM, Kung H-F, Wang JM, Osburn BI, Chuang RY (2000b) Opioid suppress chemokine-mediated migration of monkey neutrophils and monocytes—an instant response. Immunopharmacology 47:53–62

    Article  PubMed  CAS  Google Scholar 

  • Nair MP, Laing TJ, Schwartz S (1986) A decreased natural and antibody-dependent cellular cytotoxic activities in intravenous drug abusers. Clin. Immunol. Immunopathol 38:68–78

    Article  PubMed  CAS  Google Scholar 

  • Nath A, Hauser KF, Wojna V, Booze RM, Maragos W, Prendergast M, Cass W, Turchan JT (2002) Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr 31(Suppl 2):(Review)

    Google Scholar 

  • Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278(5335):58

    Article  PubMed  CAS  Google Scholar 

  • Novick DM, Ochshorn M, Ghali V, Croxson TS, Mercer WD, Chiorazzi N, Kreek MJ (1989) Natural killer cell activity and lymphocyte subsets in parenteral heroin abusers and long-term methadone maintenance patients. J Pharmacol Exp Ther 250:606–610

    PubMed  CAS  Google Scholar 

  • Ocasio FM, Jiang Y, House SD, Chang SL (2004) Chronic morphine accelerates the progression of lipopolysaccharide-induced sepsis to septic shock. J Neuroimmunol 149(1–2):90–100

    Article  PubMed  CAS  Google Scholar 

  • Pacifici R, Minetti M, Zuccaro P, Pietraforte D (1995) Morphine affects cytostatic activity of macrophages by the modulation of nitric oxide release. Int J Immunopharmacol 17(9):771–777

    Article  PubMed  CAS  Google Scholar 

  • Patel K, Bhaskaran M, Dani D, Reddy K, Singhal PC (2002) Role of heme oxygenase-1 in morphine-modulated apoptosis and migration of macrophages. J Infect Dis 187(1):47–54

    Article  PubMed  Google Scholar 

  • Peterson PK, Sharp B, Gekker G, Brummitt C, Keane WF (1987a) Opioid-mediated suppression of cultured peripheral blood mononuclear cell respiratory burst activity. J Immunol 138(11):3907–3912

    PubMed  CAS  Google Scholar 

  • Peterson PK, Sharp B, Gekker G, Brummitt C, Keane WF (1987b) Opioid-mediated suppression of interferon-gamma production by cultured peripheral blood mononuclear cells. J Clin Invest 80(3):824–831

    Article  PubMed  CAS  Google Scholar 

  • Peterson PK, Gekker G, Brummitt C, Pentel P, Bullock M, Simpson M, Hitt J, Sharp B (1989)Suppression of human peripheral blood mononuclear cell function by methadone and morphine. J Infect Dis 159(3):480–487

    PubMed  CAS  Google Scholar 

  • Quaglio G, Lugoboni F, Talamini G, Lechi A, Mezzelani P (2002) Prevalence of tuberculosis infection and comparison of multiple-puncture liquid tuberculin test and Mantoux test among drug users. Scand. J Infect Dis 34(8):574–576

    Article  PubMed  Google Scholar 

  • Reichman LB, Felton CP, Edsall JR (1979) Drug dependence, a possible new risk factor for tuberculosis disease. Arch Intern Med 139:337–339

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Loh HH (1996) Effects of opioids on the immune system. Neurochem Res 21(11):1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Ge BL, Ramakrishan S, Lee NM, Loh HH (1991a) [3H]-Morphine binding to thymocytes is enhanced by IL-1 stimulation. FEBS Lett 287:93–96

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Ramakrishnan S, Loh HH, Lee NM (1991b) Chronic morphine treatment selectively suppresses macrophage colony formation in bone marrow. Eur J Pharmacol 195:359–363

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Ge BL, Loh LL, Lee NM (1992) Characterization of 3H-Morphine binding to interleukin-1 activated thymocytes. J Pharmacol Exp Ther 263:451–456

    PubMed  CAS  Google Scholar 

  • Roy S, Chapin R, Cain K, Charboneau R, Ramakrishnan, S, Barke RA (1997) Morphine inhibits transcriptional regulation of IL-2 synthesis in thymocytes. Cell Immunol 179:1–9

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Barke RA, Loh HH (1998a) Mu-receptor knockout mice: the role of mu-opioid receptor in immune functions. Mol Brain Res 61(1–2):190–194

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Cain KJ, Chapin RB, Charboneau RG, Barke RA (1998b, Apr 17) Morphine modulates NF kappa B activation in macrophages. Biochem Biophys Res Commun 245(2):392–396

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Cain KJ, Charboneau RG, Barke RA (1998c) Morphine accelerates the progression of sepsis in an experimental sepsis model. Adv Exp Med Biol 437:21–31

    PubMed  CAS  Google Scholar 

  • Roy S, Balasubramanian S, Sumandeep S, Charboneau R, Wang J, Melnyk D, Beilman GJ, Vatassery R, Barke RA (2001a) Morphine directs T cells toward TH2 differentiation. Surgery 130(2):304–309

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Charboneau R, Barke RA, Loh HH (2001b) Role of mu-opioid receptor in immune function. Adv Exp Med Biol 493:117–126

    PubMed  CAS  Google Scholar 

  • Roy S, Wang JH, Balasubramanian S, Sumandeep, Charboneau R, Barke R, Loh HH. (2001c) Role of hypothalamic–pituitary axis in morphine-induced alteration in thymic cell distribution using mu-opioid receptor knockout mice. J Neuroimmunol 116(2):147–155

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Wang JH, Sumandeep G, Charboneau RG, Loh HH, Barke RA. (2004) Chronic morphine treatment differentiates T helper cells to Th2 effector cells by modulating transcription factors GATA 3 and T bet. J Neuroimmunol 147:78–81

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Wang JH, Charboneau RG, Loh HH, Barke RA (2005) Morphine induces CD4+ T cell IL-4 expression through an adenylyl cyclase mechanism independent of the protein kinase A pathway. J Immunol Nov 15;175(10):6361–6367

    PubMed  CAS  Google Scholar 

  • Runkel NSF, Moody FG, Smith GS, Rodriguez LF, Chen Y, Larocco MT. (1993) Alterations in rat intestinal transit by morphine promote bacterial translocation. Dig Dis Sci 38:1530–1536

    Article  PubMed  CAS  Google Scholar 

  • Sacerdote P. (2003) Effects of in vitro and in vivo opioids on the production of IL-12 and IL-10 by murine macrophages. Ann N Y Acad Sci 992:129–140

    PubMed  CAS  Google Scholar 

  • Saurer TB, Carrigan KA, Ijames SG, Lysle DT. (2004) Morphine-induced alterations of immune status are blocked by the dopamine D2-like receptor agonist 7-OH-DPAT. J Neuroimmunol 148(1–2):54–62

    Article  PubMed  CAS  Google Scholar 

  • Schulz S, Hollt V (1998) Opioid withdrawal activates MAP kinase in locus coeruleus neurons in morphine-dependent rats in vivo. Eur J Neurosci 10(3):1196–1201

    Article  PubMed  CAS  Google Scholar 

  • Sedqui M, Roy S, Ramakrishnan S, Elde R, Loh HH. (1995) Complementary cloning of a mu-opioid receptor from rat peritoneal macrophage. Biochem Biophys Res Commun 208:563–574

    Article  Google Scholar 

  • Sharma SK, Klee WA, Nirenberg M. (1975) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci USA 72:3092–3096

    Article  PubMed  CAS  Google Scholar 

  • Sharp BM, Keane WF, Suh HJ, Gekker G, Tsukayama D, Peterson PK. (1985) Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macrophages. Endocrinology 117(2):793–795

    Article  PubMed  CAS  Google Scholar 

  • Shavit Y, Lewis JW, Terman GW, Gale RP, Liebeskind JC (1984) Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity. Science 223:188–190

    Article  PubMed  CAS  Google Scholar 

  • Shavit Y, Martin FC, Angarita LH, Gale RP, Liebeskind JC. (1986) Morphine-induced suppression of natural killer cell activity is mediated by the adrenal gland. Soc Neurosci Abst 12:339

    Google Scholar 

  • Singhal PC, Sharma P, Kapasi AA, Reddy K, Franki N, Gibbons N (1998) Morphine enhances macrophage apoptosis. J Immunol 160(4):1886–1893

    PubMed  CAS  Google Scholar 

  • Singhal PC, Kapasi AA, Franki N, Reddy K. (2000) Morphine-induced macrophage apoptosis: the role of transforming growth factor-beta. Immunology 100(1):57–62

    Article  PubMed  CAS  Google Scholar 

  • Singhal PC, Bhaskaran M, Patel J, Patel K, Kasinath BS, Duraisamy S, Franki N, Reddy K, Kapasi AA. (2002) Role of p38 mitogen-activated protein kinase phosphorylation and Fas–Fas ligand interaction in morphine-induced macrophage apoptosis. J Immunol 168(8):4025–4033

    PubMed  CAS  Google Scholar 

  • Stefano GB, Cadet P, Fimiani C, Magazine HI. (2001) Morphine stimulates iNOS expression via a rebound from inhibition in human macrophages: nitric oxide involvement. Int J Immunopathol Pharmacol 14(3):129–138

    PubMed  CAS  Google Scholar 

  • Szabo I, Rojavin M, Bussiere JL, Eisenstein TK, Adler MW, Rojers TJ. (1993) Suppression of peritoneal macrophage phagocytosis of Candida albicans by opioids. J Pharmacol Exp Ther 267:703–706

    PubMed  CAS  Google Scholar 

  • Taub DD, Eisenstein TK, Geller EB, Adler MW, Rogers TJ. (1991) Immunomodulatory activity of mu- and kappa-selective opioid agonists. Proc Natl Acad Sci USA 88:360–364

    Article  PubMed  CAS  Google Scholar 

  • Thomas PT, Bhargava HN, House RV. Immunomodulatory effects of in vitro exposure to morphine and its metabolites. Pharmacology. 1995;50(1):51–62

    Article  PubMed  CAS  Google Scholar 

  • Tian M, Broxmeyer HE, Fan Y, Lai Z, Zhang S, Aronica S, Cooper S, Bigsby RM, Steinmetz R, Engle SJ, Mestek A, Pollock JD, Lehman MN, Jansen HT, Ying M, Stambrook PJ, Tischfield JA, Yu L (1997) Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. J Exp Med 185(8):1517–1522

    Article  PubMed  CAS  Google Scholar 

  • Tomassini N, Renaud F, Roy S, Loh HH (2004) Morphine inhibits Fc-mediated phagocytosis through μ and δ opioid receptors. J Neuroimmunol Feb;147(1–2):131–133. No abstract available

    Article  PubMed  CAS  Google Scholar 

  • Tomei EZ, Renaud FL (1997) Effect of morphine on Fc-mediated phagocytosis by murine macrophages in vitro. J Neuroimmunol 74(1–2):111–116

    Article  PubMed  CAS  Google Scholar 

  • Tsukayama D, Breitenbucher R, Steinberg S, Allen J, Nelson R, Gekker G, Keane W, Peterson P. (1986) Polymorphonuclear leukocyte, T-lymphocyte, and natural killer cell activities in elderly nursing home residents. Eur J Clin Microbiol 5(4):468–471

    Article  PubMed  CAS  Google Scholar 

  • Tubaro E, Borelli G, Croce C, Cavallo G, Santiangeli C (1983) Effect of morphine on resistance to infection. J Infect Dis 148:656–666

    PubMed  CAS  Google Scholar 

  • Tubaro E, Santiangeli C, Belogi L, Borelli G, Cavallo G, Croce C, Avico U (1987) Methadone vs morphine: comparison of their effect on phagocytic functions. Int J Immunopharmacol 9(1):79–88

    Article  PubMed  CAS  Google Scholar 

  • Vallejo R, de Leon-Casasola O, Benyamin R (2004) Opioid therapy and immunosuppression: a review. Am J Ther 11(5):354–365

    Article  PubMed  Google Scholar 

  • Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S. (2001) Morphine modulates lymph node-derived T lymphocyte function: role of caspase-3, -8, and nitric oxide. J Leukoc Biol 70(4):527–536

    PubMed  CAS  Google Scholar 

  • Wang J, Charboneau R, Balasubramanian S, Barke RA, Loh HH, Roy S (2002)The immunosuppressive effects of chronic morphine treatment are partially dependent on corticosterone and mediated by the mu-opioid receptor. J Leukoc Biol 71(5):782–790

    PubMed  CAS  Google Scholar 

  • Wang J, Barke RA, Charboneau R, Roy S (2005) Morphine impairs host innate immune response and increases susceptibility to Streptococcus pneumoniae lung infection. J Immunol 174(1):426–434

    PubMed  CAS  Google Scholar 

  • Weber RJ, Pert A (1989) The periaqueductal grey matter mediates opiate-induced-immunosuppression. Science 245:188–190

    Article  PubMed  CAS  Google Scholar 

  • Yukioka H, Rosen M, Evans KT, Leach KG, Hayward MWJ, Saggu GS (1987) Gastric emptying and small bowel transit times in volunteers after intravenous morphine and nalbuphine. Anaesthesia 42:704–710

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants RO-1 DA 12104, KO2 DA015349, and P50 DA 11806 from the National Institute of Drug Abuse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabita Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Wang, J., Kelschenbach, J. et al. Modulation of Immune Function by Morphine: Implications for Susceptibility to Infection. Jrnl NeuroImmune Pharm 1, 77–89 (2006). https://doi.org/10.1007/s11481-005-9009-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-005-9009-8

Keywords

Navigation