Skip to main content
Log in

Caractérisation biomécanique des ligaments utérins. Implication en statique, en pelvienne

Biomechanical characterisation of uterine ligaments. Implications for the pelvic floor

  • Article Original / Original Article
  • Published:
Pelvi-périnéologie

Résumé

Introduction

Touchant un tiers des femmes de tous âges, le prolapsus pelvi-génital constitue une préoccupation majeure des chirurgiens gynécologues. De nombreux éléments et facteurs de risque rendent la physiopathologie du prolapsus complexe. Les ligaments pelviens semblent jouer un rôle prépondérant dans les troubles de la statique pelvienne. L’objectif de notre étude est de définir les propriétés mécaniques des ligaments utérins afin de mieux comprendre leur implication dans la physiopathologie et la chirurgie du prolapsus génital.

Matériels et méthodes

Les ligaments utérosacrés, ronds et larges ont été prélevés sur des bassins de cadavres féminins indemnes de prolapsus et de chirurgie pelvienne. Ces prélèvements ont été réalisés sur 13 cadavres. Des tests de traction uniaxiale, à vitesse de déformation constante, ont été réalisés pour chaque ligament. Le grand nombre de résultats ont permis une étude statistique des propriétés mécaniques.

Résultats

Les tests mécaniques réalisés sur les ligaments utérins, prélevés sur 13 cadavres féminins, ont permis de mettre en évidence un comportement mécanique élastique non linéaire. Dans ce cas, le comportement mécanique des ligaments peut se caractériser par deux paramètres, C0 et C1, relatifs à la rigidité à faible et forte déformation. La reproductibilité intra-individuelle est satisfaisante. Le ligament utérosacré apparaît comme le ligament le plus rigide des trois ligaments étudiés, que ce soit à faible ou forte déformation. Une dispersion interindividuelle a été constatée. Chacune des patientes étudiées présentait une latéralisation avec un côté (droite ou gauche) plus rigide que l’autre. Onze des 13 patientes ont eu un prélèvement de tissu vaginal associé, permettant ainsi de montrer que le tissu vaginal est moins rigide que le tissu ligamentaire.

Conclusion

Il a été mis en évidence, pour la première fois, le comportement mécanique hyperélastique des ligaments utérosacrés, ronds et larges. Cette approche montre que le ligament utérosacré est le plus rigide par rapport aux ligaments ronds, larges ou encore au tissu vaginal. Sa contribution en statique pelvienne apparaît donc comme majeure. Une étude mécanique complémentaire de ces ligaments en situation de prolapsus génital permettrait d’apporter des réponses supplémentaires quant aux étiologies des récidives des cures chirurgicales de prolapsus.

Abstract

Introduction

Pelvic organ prolapse (POP) affects one-third of women of all ages, and is a major concern for gynaecologic surgeons. Many elements and risk factors make the physiopathology of prolapse complex. Pelvic ligaments seem to play a predominant role in pelvic floor dysfunction. The aim of our study is to define the mechanical properties of uterine ligaments to gain a better understanding of their role in the physiopathology and surgery of POP.

Methods and materials

The uterosacral, round and broad ligaments were removed from female cadavers with no history of prolapse or pelvic surgery. A total of 13 cadavers were used. Each ligament was tested for uniaxial tensile strength at constant deformation rate. The large number of results obtained enabled a statistical study of mechanical properties.

Results

The mechanical tests performed on uterine ligaments taken from 13 female cadavers showed the existence of nonlinear elastic behaviour. In this case, the mechanical behaviour of the ligaments could be expressed by two parameters C0 and C1, relating to stiffness at low and high deformation rates. Intra-individualreproducibility was satisfactory. The uterosacral ligament was found to be the stiffest of the three ligaments studied, at both low and high deformation rates. Inter-individual dispersion was noted. Each subject studied displayed lateralisation, with one side (either right or left) stiffer than the other. A vaginal tissue sample was also taken from 11 of the 13 subjects, which made it possible to show that vaginal tissue is less stiff than ligament tissue.

Conclusion

The hyperelastic mechanical behaviour of the uterosacral, round and broad ligaments was shown for the first time. This approach showed that the uterosacral ligament is stiffer than the round and broad ligaments and vaginal tissue. Therefore, it appears that it plays a more important role in pelvic floor support. Further mechanical studies of these ligaments in POP would provide further answers to the aetiologies of the recurrence of prolapse after curative surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Samuelsson EC, Victor FT, Tibblin G, Svärdsudd KF (1999) Signs of genital prolapse in a Swedish population of women 20 to 59 years of age and possible related factors. Am J Obstet Gynecol 180:299–305

    Article  PubMed  CAS  Google Scholar 

  2. Swift SE (2000) The distribution of pelvic organ support in a population of female subjects seen for routine gynecologic health care. Am J Obstet Gynecol 183:277–285

    Article  PubMed  CAS  Google Scholar 

  3. Olsen AL, Smith VJ, Bergstrom JO, et al (1997) Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol 89:501–506

    Article  PubMed  CAS  Google Scholar 

  4. Blanc B, Deval B (2005) Prolapsus génital: contexte nosologique et pathogénie connue. In: Pelvi-périnéologie. Blanc B, Siproudhis L Springer, Paris, 619 pages. pp. 175–185

    Chapter  Google Scholar 

  5. Shull BL, Benn SJ, Kuehl TJ (1994) Surgical management of prolapse of the anterior vaginal segment: an analysis of support defects, operative morbidity, and anatomic outcome. Am J Obstet Gynecol 171(6):1429–1436

    PubMed  CAS  Google Scholar 

  6. Fatton B, Amblard J, Debodinance P, et al (2007) Transvaginal repair of genital prolapse: preliminary results of a new tension-free vaginal mesh (Prolift technique)- a case series multicentric study. Int Urogynecol J Pelvic Floor Dysfunct 18(7):743–752

    Article  PubMed  CAS  Google Scholar 

  7. De Tayrac R, Devoldere G, Renaudie J, et al (2007) Prolapse repair by vaginal route using a new protected low-weight polypropylene mesh: 1-year functional and anatomical outcome in a prospective multicentre study. Int Urogynecol J Pelvic Floor Dysfunct 18(3):251–256

    Article  PubMed  Google Scholar 

  8. Rubod C, Boukerrou M, Brieu M, et al (2005) Biomechanical properties and experimental protocol for prolapsed vaginal tissue. First international conference on mechanics of biomaterials & tissues, Hawaï

  9. Brown RP (1996) Physical testing of rubber. 3rd edition. Chapman & Hall

  10. Rubod C, Boukerrou M, Brieu M, et al (2007) Biomechanical properties of vaginal tissue — Part 1: new experimental protocol. J Urol 178:320–325

    Article  PubMed  Google Scholar 

  11. Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11:582–592

    Article  Google Scholar 

  12. Rivlin RS (1948) Large elastic deformations of isotropic materials. I. Fundamental concepts, II. Some uniqueness theorems for pure homogenous deformations. Philos Trans R Soc Lond Ser A: Math Phys Sci A240:459–490

    Article  Google Scholar 

  13. Gabriel B, Rubod C, Brieu M, et al (2010) Vagina, abdominal skin, and aponeurosis: do they have similar biomechanical properties? Int Urogynecol J Pelvic Floor Dysfunct [Epub ahead of print]

  14. Querleu D (1995) techniques chirurgicales en gynécologie. Masson 1ère édition

  15. Conza NE, Rixen DJ, Plomp S (2007) Vibration testing of a fresh-frozen human pelvis: the role of pelvic ligaments. J Biomech 40:1599–1605

    Article  PubMed  CAS  Google Scholar 

  16. Jean-Charles C, Rubod C, Boukerrou M, et al (2010) Biomechanical properties of prolapsed or non-prolapsed vaginal tissue: impact on genital prolapsed surgery. Int Urogynecol J Pelvic Floor Dysfunct [Epub ahead of print]

  17. Cosson M, Boukerrou M, Lacaze S, et al (2003) A study of pelvic ligament strength. Eur J Obstet Gynecol Reprod Biol 109:80–87

    Article  PubMed  Google Scholar 

  18. Reay Jones NH, Healy JC, King LJ, et al (2003) Pelvic connective tissue resilience decreases with vaginal delivery, menopause and uterine prolapse. Br J Surg 90:466–472

    Article  PubMed  CAS  Google Scholar 

  19. Umek WH, Morgan DM, Ashton-Miller JA, DeLancey JO (2004) Quantitative analysis of uterosacral ligament origin and insertion points by magnetic resonance imaging. Obstet Gynecol 103(3): 447–451

    Article  PubMed  Google Scholar 

  20. Boukerrou M, Lambaudie E, Collinet P, et al (2004) Mechanical resistance of pelvic ligaments used for incontinence or prolapse surgery. Gynecol Obstet Fertil 32:601–606

    Article  PubMed  CAS  Google Scholar 

  21. Vardy MD, Gardner TR, Cosman F, et al (2005) The effects of hormone replacement on the biomechanical properties of the uterosacral and round ligaments in the monkey model. Am J Obstet Gynecol 192(5):1741–1751

    Article  PubMed  CAS  Google Scholar 

  22. Chen L, Ashton-Miller JA, Hsu Y, DeLancey JO (2006) Interaction among apical support, levator ani impairment, and anterior vaginal wall prolapse. Obstet Gynecol 108:324–332

    Article  PubMed  Google Scholar 

  23. Blaisdell FE (1917) The anatomy of sacro-uterine ligaments. Anat Record 12:1–42

    Article  Google Scholar 

  24. Ramanah R, Parratte B, Hubert N, et al (2009) Anatomical and histological study of the uterosacral ligament: practical surgical consequences. J Gynecol Obstet Biol Reprod (Paris) 38(4):304–311

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rivaux.

Additional information

Public/Intérêt: Chercheurs/Élevé. Cliniciens/Élevé. Enseignants/Élevé. Étudiants/Élevé. Autres professions de santé/Faible. Cadres santé publique/Faible.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivaux, G., Rubod, C., Dedet, B. et al. Caractérisation biomécanique des ligaments utérins. Implication en statique, en pelvienne. Pelv Perineol 6, 67–74 (2011). https://doi.org/10.1007/s11608-010-0348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11608-010-0348-4

Mots clés

Keywords

Navigation