Skip to main content
Log in

Micronutrients in Chronic Heart Failure

  • Pharmacologic Therapy (WHW Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF)-associated mortality remains high, despite guideline-recommended medical therapies. Poor nutritional status and unintentional cachexia have been shown to have a strong association with worse survival in HF patients. Importantly, micronutrient deficiencies are potential contributing factors to the progression of HF. This review aims to summarize contemporary evidence on the role of micronutrients in the pathophysiology and outcome of HF patients. Emphasis will be given to the most well-studied micronutrients, specifically, vitamin D, vitamin B complex, coenzyme Q10 and L-carnitine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. Heart Disease and Stroke Statistics–2011 Update. A report from the American Heart Association. Circulation. 2011;123:e18–209.

    Article  Google Scholar 

  2. Hunt SA, Abraham WT, Chin MH, Feldman AM, et al. Focused update incorporated into the ACC/AHA 2005 Guidelines for the Diagnosis and Management of Heart Failure in Adults; A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, Developed in Collaboration With the International Society for Heart and Lung Transplantation. J Am Coll Cardiol. 2009, 14;53 (15): e1–e90.

    Google Scholar 

  3. Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344–50.

    Article  PubMed  CAS  Google Scholar 

  4. Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart failure. N Engl Med. 2002;347:1397–402.

    Article  Google Scholar 

  5. Anker SD, Ponikowski P, Varney S, et al. Wasting as independent risk factor for mortality in chronic heart failure. Lancet. 1997;349:1050–3.

    Article  PubMed  CAS  Google Scholar 

  6. McKeag NA, McKinley MC, Woodside JV, Harbinson MT, McKeown PP. The role of micronutrients in heart failure. J Acad Nutr Diet. 2012;112:870–86. Review.

    Article  PubMed  CAS  Google Scholar 

  7. Witham MD. Vitamin D in chronic heart failure. Curr Heart Fail Rep. 2011;8:123–30.

    Article  PubMed  CAS  Google Scholar 

  8. Shane E, Mancini D, Aaronson K, et al. Bone mass, vitamin D deficiency, and hyperparathyroidism in congestive heart failure. Am J Med. 1997;103:197–207.

    Article  PubMed  CAS  Google Scholar 

  9. Zittermann A, Schleithoff SS, Tenderich G, et al. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003;41:105–12.

    Article  PubMed  CAS  Google Scholar 

  10. Pilz S, Marz W, Wellnitz B, et al. Association of vitamin D deficiency with heart failure and sudden cardiac death in a large cross-sectional study of patients referred for coronary angiography. J Clin Endocrinol Metab. 2008;93:3927–35.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson JL, May HT, Horne BD, et al. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am J Cardiol. 2010;106:963–8. This large population-based cohort study showed a significant increase in risk of new-onset heart failure among patients with low 25(OH) vitamin D.

    Article  PubMed  CAS  Google Scholar 

  12. Schleithoff SS, Zittermann A, Tenderich G, et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006;83:754–9.

    PubMed  CAS  Google Scholar 

  13. Cardus A, Panizo S, Encinas M, et al. 1, 25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter. Atherosclerosis. 2009;204:85–9.

    Article  PubMed  CAS  Google Scholar 

  14. Lavie CJ, Lee JH, Milani RV. Vitamin D and cardiovascular disease: will it live up to its hype? J Am Coll Cardiol. 2011;58:1547–56.

    Article  PubMed  CAS  Google Scholar 

  15. Witham MD, Crighton LJ, Gillespie ND, et al. The effects of vitamin D supplementation on physical function and quality of life in older heart failure patients: a randomised controlled trial. Circ Heart Fail. 2010;3:195–201. This was the first published randomized controlled trial of vitamin D in older heart failure patients. No significant improvement was seen on exercise capacity, quality of life, or TNF- alpha levels despite doubling of 25OHD levels. However, natriuretic peptides did decrease in the study group.

    Article  PubMed  CAS  Google Scholar 

  16. Ameri P, Ronco D, Casu M, et al. High prevalence of vitamin D deficiency and its association with left ventricular dilation: an echocardiography study in elderly patients with chronic heart failure. Nutr Metab Cardiovasc Dis. 2010;20:633–40.

    Article  PubMed  CAS  Google Scholar 

  17. Bischoff-Ferrari HA, Giovannucci E, Willett WC, et al. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes. Am J Clin Nutr. 2006;84:18–28.

    PubMed  CAS  Google Scholar 

  18. Gotsman I, Shauer A, Zwas DR, et al. Vitamin D deficiency is a predictor of reduced survival in patients with heart failure; vitamin D supplementation improves outcome. Eur J Heart Fail. 2012;14:357–66.

    Article  PubMed  CAS  Google Scholar 

  19. Gropper SAS, Smith JL, Groff JL. Advanced nutrition and human metabolism. 4th ed. Belmont: Thomson/Wadsworth; 2005.

    Google Scholar 

  20. Seligmann H, Halkin H, Rauchfleisch S, et al. Thiamine deficiency in patients with congestive heart failure receiving long-term furosemide therapy: a pilot study. Am J Med. 1991;91:151–5.

    Article  PubMed  CAS  Google Scholar 

  21. Zenuk C, Healey J, Donnelly J, Vaillancourt R, et al. Thiamine deficiency in congestive heart failure patients receiving long term furosemide therapy. Can J Clin Pharmacol. 2003;10:184–8.

    PubMed  Google Scholar 

  22. Kwok T, Falconer-Smith JF, Potter JF, Ives DR. Thiamine status of elderly patients with cardiac failure. Age Ageing. 1992;21:67–71.

    Article  PubMed  CAS  Google Scholar 

  23. Hanninen SA, Darling PB, Sole MJ, Barr A, Keith ME. The prevalence of thiamine deficiency in hospitalized patients with congestive heart failure. J Am Coll Cardiol. 2006;47:354–61.

    Article  Google Scholar 

  24. O’Keefe ST. Thiamine deficiency in elderly people. Age Ageing. 2000;29:99–101.

    Article  Google Scholar 

  25. Pepersack T, Grabusinski J, Robberecht J, et al. Clinical relevance of thiamine status amoungst hospitalized elderly patients. Gerontology. 1999;45:96–101.

    Article  PubMed  CAS  Google Scholar 

  26. Lourenco BH, Viera LP, Macedo A, Nakasato M, et al. Nutritional status and adequacy of energy and nutrient intakes among heart failure patients. Arq Bras Cardiol. 2009;9:541–8.

    Google Scholar 

  27. Lemoine A, LeDevehat C, Codaccioni JL, et al. Vit B1, B2, B6 and C statuts in hospital inpatients. Am J Clin Nutr. 1980;33:2595–600.

    PubMed  CAS  Google Scholar 

  28. Sole MJ, Jeejeebhoy KN. Conditioned nutritional requirements and the pathogenesis and treatment of myocardial failure. Curr Opin Clin Ntur Metab Care. 2000;3:417–24.

    Article  CAS  Google Scholar 

  29. Shimon I, Almog S, Vered Z, Seligmann H, et al. Improved left ventricular function after thiamine supplementation in patients with congestive heart failure receiving long-term furosemide therapy. Am J Med. 1995;98:485–90.

    Article  PubMed  CAS  Google Scholar 

  30. Schoenenberger AW, Schoenenberger-Berzins R, de Maur CA, et al. Thiamine supplementation in symptomatic chronic heart failure: a randomized, double-blinded, placebo-controlled, cross-over pilot study. Clin Res Cardiol. 2012;101:159–64. The authors evaluated the effect of thiamine supplementation in patients with chronic heart failure. The primary outcome of the double blind, randomized cross-over trial was change in LVEF after receiving 300mg of thiamine for 4 weeks. They found a significant improvement in LVEF, an absolute increase of 3.9 %, after 28 days of oral supplementation.

    Article  PubMed  CAS  Google Scholar 

  31. Keith ME, Walsh MA, Darling PB, et al. B-vitmain deficiency in hospitalized patients with heart failure. J Am Diet Assoc. 2009;109:1406–10.

    Article  PubMed  CAS  Google Scholar 

  32. Refsum H, Smith AD, Ueland PM, et al. Facts and recommendations about total homocysteine determinations: an expert opinion. Clin Chem. 2004;50:3–32.

    Article  PubMed  CAS  Google Scholar 

  33. Stanger O, Weger M. Interactions of homocysteine, nitric oxide, folate and radicals in the progressively damaged endothelium. Clin Chem Lab Med. 2003;41:1444–54.

    PubMed  CAS  Google Scholar 

  34. Arcand J, Floras V, Ahmed M, et al. Nutritional inadequacies in patients with stable heart failure. J Am Diet Assoc. 2009;109:1909–13.

    Article  PubMed  CAS  Google Scholar 

  35. Gorelik O, Almonznino-Sarafian D, Feder I, Wachsman O, et al. Dietary intake of various nutrients in older patients with congestive heart failure. Cardiology. 2003;99:177–81.

    Article  PubMed  CAS  Google Scholar 

  36. Catapano G, Pedone C, Nunziata E, et al. Nutrient intake and serum cytokine pattern in elderly people with heart failure. Eur J Heart Fail. 2008;10:428–34.

    Article  PubMed  CAS  Google Scholar 

  37. Mangoni AA, Sherwood RA, Asonganyi B, Swfit SG, et al. Short-term oral folic acid supplementation enhances endothelial function in patients with type 2 diabetes. Am J Hypertens. 2005;18(2, pt1):220–6.

    Article  PubMed  CAS  Google Scholar 

  38. Doshi SN, McDowell IF, Moat SJ, et al. Folic acid improves endothelial function in coronary artery disease via mechanism largely independent of homocysteine lowering. Circulation. 2002;105:22–6.

    Article  PubMed  CAS  Google Scholar 

  39. Zafarullah H, Shahbbaz AU, Alturkmani R, et al. Elevated serum cobalamin in patients with decompensated biventricular failure. Am J Med Sci. 2008;336:383–8.

    Article  PubMed  Google Scholar 

  40. Cui R, Iso H, Chigusa D, et al. Dietary folate and Vitamin B6 and B12 Intake in Relation to mortality from Cardiovascular Diseases, Japan Collaborative Cohort Study. Stroke. 2010;41:1285–9. The study followed more than 59,000 patients for 14 years and assessed the effect of dietary intake of folate and B Vitamins on the risk of cardiovascular disease. The authors found that both folate and B6 were associated with significantly lower risk of death from Heart Disease, Stroke and coronary heart disease in Japanese patients.

    Article  PubMed  CAS  Google Scholar 

  41. Singh U, Devaraj S, Jialal I. Coenzyme Q10 supplementation and heart failure. Nutr Rev. 2007;65(6 part 1):286–93.

    Article  PubMed  Google Scholar 

  42. Langsjoen PH, Langsjoen AM. Overview of the use of CoQ10 in cardiovascular disease. Biofactors. 1999;9:273–84.

    Article  PubMed  CAS  Google Scholar 

  43. Pepe S, Marasco SF, Haas SJ, et al. Coenzyme Q10 in cardiovascular disease. Mitochondrion. 2007;7(suppl):S154–67.

    Article  PubMed  CAS  Google Scholar 

  44. Folkers K, Littaru GP, Ho L, Runge TM, Havanonda S, Cooley D. Evidence for a deficiency of coenzyme Q10 in human heart disease. Int J Vitamin Res. 1970;40:380–90.

    CAS  Google Scholar 

  45. Littaru GP, Ho L, Folkers K. Deficiency of coenzyme Q10 in human heart disease, Part 1. Int J Vitamin Res. 1972;42:291–305.

    CAS  Google Scholar 

  46. Mortensen SA. Perspectives on therapy of cardiovascular diseases with coenzyme Q10 (ubiquinone). Clin Invest. 1993;71S:116–23.

    Google Scholar 

  47. Folkers K, Baker L, Richardson PC, Shizukuishi S, Takamura K, Drzewoski J, Lewandowski J, Ellis JM: Biomedical and clinical aspects of coenzyme Q, Vol. 2 In: Yamamura Y, Folkers K, Ito Y, editors. Amsterdam: Elsevier/North Holland; 1980 p. 449.

  48. Belardinelli R, Mucaj A, Lacalaprice F, et al. Coenzyme Q10 and exercise training in chronic heart failure. Eur Heart J. 2006;27:2675–81.

    Article  PubMed  CAS  Google Scholar 

  49. Langsjoen PH, Langsjoen AM. Overview of the use of CoQ10 in cardiovascular disease. Biofactors. 1999;9:273–84.

    Article  PubMed  CAS  Google Scholar 

  50. Khatta M, Alexander BS, Krichten CM, et al. The effect of coenzyme Q10 in patients with congestive heart failure. Ann Intern Med. 2000;132:636–40.

    PubMed  CAS  Google Scholar 

  51. Belardinelli R, Mucaj A, Lacalaprice F, et al. Coenzyme Q10 improves contractility of dysfunctional myocardium in chronic heart failure. Biofactors. 2005;25:137–45.

    Article  PubMed  CAS  Google Scholar 

  52. Soja AM, Mortensen SA. Treatment of congestive heart failure with coenzyme Q10 illuminated by meta-analyses of clinical trials. Mol Aspects Med. 1997;18(suppl):S159–68.

    Article  PubMed  CAS  Google Scholar 

  53. Sander S, Coleman CI, Patel AA, et al. The impact of coenzyme Q10 on systolic function in patients with chronic heart failure. J Card Fail. 2006;12:464–72.

    Article  PubMed  CAS  Google Scholar 

  54. Mortensen A. Overview on coenzyme Q10 as adjunctive therapy in chronic heart failure. Rationale, design and end-points of "Q-symbio"—a multinational trial. Biofactors. 2003;18(1–4):79–89.

    Article  PubMed  CAS  Google Scholar 

  55. Arsenian MA. Carnitine and its derivatives in cardiovascular disease. Prog Cardiovasc Dis. 1997;40:265–86.

    Article  PubMed  CAS  Google Scholar 

  56. Schonekess BO, Allard MF, Lopaschuk GD. Propionyl L–carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res. 1995;77:726–34.

    Article  PubMed  CAS  Google Scholar 

  57. Broderick TL, Quinney HA, Lopaschuk GD. Carnitine stimulation of glucose oxida- tion in the fatty acid perfused isolated working rat heart. J Biol Chem. 1992;267:3758–63.

    PubMed  CAS  Google Scholar 

  58. Abdel-aleem S, Sayed-Ahmed M, Nada MA, Hendrickson SC, St LJ, Lowe JE. Stimulation of non-oxidative glucose utilization by L-carnitine in isolated myocytes. J Mol Cell Cardiol. 1995;27:2465–72.

    Article  PubMed  CAS  Google Scholar 

  59. Calvani M, Reda E, Arrigoni-Martelli E. Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol. 2000;95:75–83.

    Article  PubMed  CAS  Google Scholar 

  60. Regitz V, Shug AL, Fleck E. Defective myocardial carnitine metabolism in congestive heart failure secondary to dilated cardiomyopathy and to coronary, hypertensive and valvular heart diseases. Am J Cardiol. 1990;65:755–60.

    Article  PubMed  CAS  Google Scholar 

  61. Masumura Y, Kobayashi A, Yamazaki N. Myocardial free carnitine and fatty acylcarnitine levels in patients with chronic heart failure. Jpn Circ J. 1990;54:1471–6.

    Article  PubMed  CAS  Google Scholar 

  62. Soukoulis V, Dihu JB, Sole M, et al. Micronutrient deficiencies: an unmet need in heart failure. J Am Coll Cardiol. 2009;54:1660–73.

    Article  PubMed  CAS  Google Scholar 

  63. Vescovo G, Ravara B, Gobbo V, Dalla LL. Inflammation and perturbation of the l-carnitine system in heart failure. Eur J Heart Fail. 2005;7:997–1002.

    Article  PubMed  CAS  Google Scholar 

  64. El-Aroussy W, Rizk A, Mayhoub G, Aleem SA, El-Tobgy S, Mokhtar MS. Plasma carnitine levels as a marker of impaired left ventricular functions. Mol Cell Biochem. 2000;213:37–41.

    Article  PubMed  CAS  Google Scholar 

  65. Serati AR, Motamedi MR, Emami S, et al. L- carnitine treatment in patients with mild diastolic heart failure is associated with improvement in diastolic function and symptoms. Cardiology. 2010;116:178–82.

    Article  PubMed  CAS  Google Scholar 

  66. Rizos I. Three-year survival of patients with heart failure caused by dilated cardiomyopathy and L-carnitine administration. Am Heart J. 2000;139:S120–3.

    Article  PubMed  CAS  Google Scholar 

  67. Ueland T, Svardal A, Oie E, et al. Disturbed carnitine regulation in chronic heart failure -Increased plasma levels of palmitoyl- carnitine are associated with poor prognosis. Int J Cardiol. 2012. doi:10.1016/j.ijcard.2012.04.150. Relatively large study showing a wide spectrum of disturbances in carnitine precursors and derivates in plasma in patients with chronic HF. In particular, free L-carnitine levels and its derivate palmitoyl-carnitine were increased in HF patients and significantly correlated with NT- proBNP and NYHA functional class. Moreover, high levels of palmitoyl-carnitine were independently associated with adverse outcome in these patients.

  68. Oster O. Trace element concentrations (Cu, Zn, Fe) in sera from patients with dilated cardiomyopathy. Clin Chim Acta. 1993;214:209–18.

    Article  PubMed  CAS  Google Scholar 

  69. Cenac A, Simonoff M, Djibo A. Nutritional status and plasma trace elements in peripartum cardiomyopathy. A comparative study in Niger. J Cardiovasc Risk. 1996;3:483–7.

    Article  PubMed  CAS  Google Scholar 

  70. de Lorgeril M, Salen P, Accominotti M, et al. Dietary and blood antioxidants in patients with chronic heart failure. Insights into the potential importance of selenium in heart failure. Eur J Heart Fail. 2001;3(6):661–9.

    Article  PubMed  Google Scholar 

  71. Topuzoglu G, Erbay AR, Karul AB, Yensel N. Concentrations of copper, zinc, and magnesium in sera from patients with idiopathic dilated cardiomyopathy. Biol Trace Elem Res. 2003;95:11–7.

    Article  PubMed  CAS  Google Scholar 

  72. Kosar F, Sahin I, Taskapan C, et al. Trace element status (Se, Zn, Cu) in heart failure. Anadolu Kardiyol Derg. 2006;6:216–20.

    PubMed  Google Scholar 

  73. Oster O, Prellwitz W, Kasper W, Meinertz T. Congestive cardiomyopathy and the selenium content of serum. Clin Chim Acta. 1983;128:125–32.

    Article  PubMed  CAS  Google Scholar 

  74. Chou HT, Yang HL, Tsou SS, Ho RK, Pai PY, Hsu HB. Status of trace elements in patients with idiopathic dilated cardiomyopathy in central Taiwan. Zhonghua Yi Xue Za Zhi (Taipei). 1998;61:193–8.

    CAS  Google Scholar 

  75. Navarro-Alarcon M, Lopez-Garcia de la Serrana H, Perez-Valero V, Lopez-Martinez C. Serum and urine selenium concentrations in patients with cardiovascular diseases and relationship to other nutritional indexes. Ann Nutr Metab. 1999;43:30–6.

    Article  PubMed  CAS  Google Scholar 

  76. Arroyo M, Laguardia SP, Bhattacharya SK, et al. Micronutrients in African-Americans with decompensated and compensated heart failure. Transl Res. 2006;148:301–8.

    Article  PubMed  CAS  Google Scholar 

  77. Malek F, Dvorak J, Jiresova E, Spacek R. Difference of baseline serum copper levels between groups of patients with different one year mortality and morbidity and chronic heart failure. Cent Eur J Public Health. 2003;11:198–201.

    PubMed  CAS  Google Scholar 

  78. Alehagen U, Johansson P, Björnstedt M, et al. Cardiovascular mortality and N-terminal-proBNP reduced after combined selenium and coenzyme Q10 supplementation: a 5-year prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. Int J Cardiol. 2012. doi:10.1016/j.ijcard.2012.04.156.

  79. Keith M, Geranmayegan A, Sole MJ, et al. Increased oxidative stress in patients with Congestive heart failure. JACC. 1998;31:1352–6.

    Article  PubMed  CAS  Google Scholar 

  80. Demirbag R, Yilmaz R, Erel O, Gultekin U, Aci D, Elbasan Z. The relationship between potency of oxidative stress and severity of dilated cardiomyopathy. Can J Cardiol. 2005;21:851–5.

    PubMed  CAS  Google Scholar 

  81. Piccirillo G, Nocoo M, Moise A, et al. Influence of vitamin C on baro-reflex sensitivity in chronic heart failure. Hypertension. 2003;41:1240–5.

    Article  PubMed  CAS  Google Scholar 

  82. Ellis GR, Anderson RA, Chirkov YV, et al. Neutrophil superoxide anion-generating capacity, endothelial function and oxidative stress in chronic heart failure: Effects of short- and long-term vitamin C therapy. J Am Coll Cardiol. 2000;36:1474–82.

    Article  PubMed  CAS  Google Scholar 

  83. Mak S, Overgaard CB, Newton GE. Effect of vitamin C and L-NMMA on the inotropic response to dobutamine in patients with heart failure. Am J Physiol Heart Circ Physiol. 2005;289:H2424–8.

    Article  PubMed  CAS  Google Scholar 

  84. Shinke T, Shite J, Takaoka H, et al. Vitamin C restores the contractile response to dobutamine and improves myocardial efficiency in patients with heart failure after anterior myocardial infarction. Am Heart J. 2007;154:645.e1–8.

    Article  Google Scholar 

  85. Hornig B, Arakawa N, Kohler C, Drexler H. Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation. 1998;97:363–8.

    Article  PubMed  CAS  Google Scholar 

  86. Witte KK, Nikitin NP, Parker AC, et al. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur Heart J. 2005;26:2238–44.

    Article  PubMed  CAS  Google Scholar 

  87. Giordano FJ. Oxygen, oxidative stress, hypoxia and heart failure. J Clin Invest. 2005;115:500–8.

    PubMed  CAS  Google Scholar 

  88. Takimoto E, Kass DA. Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 2007;49:241–8.

    Article  PubMed  CAS  Google Scholar 

  89. Dhalla AK, Hill MF, Singal PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol. 1996;28:506–14.

    Article  PubMed  CAS  Google Scholar 

  90. Lonn E, Bosch J, Yusuf S, Sheridan P, et al. HOPE and HOPE-TOO Trial Investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA. 2005;293:1338–47.

    Article  PubMed  Google Scholar 

  91. Marchioli R, Levantesi G, Macchia A, Marfisi RM. et al; GISSI-Prevenzione Investigators. Vitamin E increases the risk of developing heart failure after myocardial infarction: results from the GISSI Prevenzione trial. J Cardiovasc Med (Hagerstown). 2006;7:347–50.

    Article  Google Scholar 

Download references

Disclosures

S.R. Krim: none; P. Campbell: none; C.J. Lavie: none; H. Ventura: payment from Otsuka for serving on a speaker bureau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hector Ventura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krim, S.R., Campbell, P., Lavie, C.J. et al. Micronutrients in Chronic Heart Failure. Curr Heart Fail Rep 10, 46–53 (2013). https://doi.org/10.1007/s11897-012-0118-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-012-0118-4

Keywords

Navigation