Skip to main content

Advertisement

Log in

Resolution of inflammation pathways in preeclampsia—a narrative review

  • Review
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is one of the leading causes of maternal morbidity and mortality worldwide. This disease is believed to occur in two stages with placental dysfunction in early pregnancy leading to maternal clinical findings after 20 weeks of gestation, as consequence of systemic inflammation, oxidative stress, and endothelial dysfunction. Much evidence suggests that PE women display an overshooting inflammatory response throughout pregnancy due to an unbalanced regulation of innate and adaptive immune responses. Recently, it has been suggested that dysregulation of endogenous protective pathways might be associated with PE etiopathogenesis. Resolution of inflammation is an active process coordinated by mediators from diverse nature that regulate key cellular events to restore tissue homeostasis. Inadequate or insufficient resolution of inflammation is believed to play an important role in the development of chronic inflammatory diseases, like PE. In this narrative review, we discuss possible pro-resolution pathways that might be compromised in PE women, which could be targets to novel therapeutic strategies in this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American College of Obstetricians and Gynecologists. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31.

    Article  Google Scholar 

  2. Chaiworapongsa T, Chaemsaithong P, Yeo L, Romero R. Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol. 2014;10(8):466–80.

    Article  CAS  PubMed  Google Scholar 

  3. American College of Obstetricians and Gynecologists. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet Gynecol. 2002;99(1):159–67.

    Google Scholar 

  4. von Dadelszen P, Magee LA, Roberts JM. Subclassification of preeclampsia. Hypertens Pregnancy. 2003;22(2):143–8.

    Article  Google Scholar 

  5. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376(9741):631–44.

    Article  PubMed  Google Scholar 

  6. Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 2011;66(8):497–506.

    Article  PubMed  Google Scholar 

  7. Roberts JM, Hubel CA. The two stage model of preeclampsia: variations on the theme. Placenta. 2009;30(Suppl A):S32–7.

    Article  PubMed  CAS  Google Scholar 

  8. Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension. 2005;46(5):1077–85.

    Article  CAS  PubMed  Google Scholar 

  9. Ahmed A, Ramma W. Unravelling the theories of pre-eclampsia: are the protective pathways the new paradigm? Br J Pharmacol. 2015;172(6):1574–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cotechini T, Komisarenko M, Sperou A, Macdonald-Goodfellow S, Adams MA, Graham CH. Inflammation in rat pregnancy inhibits spiral artery remodeling leading to fetal growth restriction and features of preeclampsia. J Exp Med. 2014;211(1):165–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsubara K, Higaki T, Matsubara Y, Nawa A. Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int J Mol Sci. 2015;16(3):4600–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wallace JL, Ianaro A, Flannigan KL, Cirino G. Gaseous mediators in resolution of inflammation. Semin Immunol. 2015;27(3):227–33.

    Article  CAS  PubMed  Google Scholar 

  13. Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell. 2014;54(2):281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191–7.

    Article  CAS  PubMed  Google Scholar 

  15. Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O’Neill LA, et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 2007;21(2):325–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Headland SE, Norling LV. The resolution of inflammation: principles and challenges. Semin Immunol. 2015;27(3):149–60.

    Article  CAS  PubMed  Google Scholar 

  17. Sugimoto M, Sousa L, Pinho V, Perretti M, Teixeira M. Resolution of inflammation: what controls its onset? Front Immunol. 2016;160(7):1–18.

    Google Scholar 

  18. Vago JP, Tavares LP, Sugimoto MA, Lima GL, Galvão I, de Caux TR, et al. Proresolving actions of synthetic and natural protease inhibitors are mediated by Annexin A1. J Immunol. 2016;196(4):1922–32.

    Article  CAS  PubMed  Google Scholar 

  19. Odaka C, Mizuochi T, Yang J, Ding A. Murine macrophages produce secretory leukocyte protease inhibitor during clearance of apoptotic cells: implications for resolution of the inflammatory response. J Immunol. 2003;171(3):1507–14.

    Article  CAS  PubMed  Google Scholar 

  20. Titos E, Rius B, González-Périz A, López-Vicario C, Morán-Salvador E, Martínez-Clemente M, et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol. 2011;187(10):5408–18.

    Article  CAS  PubMed  Google Scholar 

  21. Fullerton JN, Gilroy DW. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov. 2016;15(8):551–67.

    Article  CAS  PubMed  Google Scholar 

  22. Orsi NM. Cytokine networks in the establishment and maintenance of pregnancy. Hum Fertil (Camb). 2008;11(4):222–30.

    Article  CAS  Google Scholar 

  23. Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol. 1999;180(2 Pt 1):499–506.

    Article  CAS  PubMed  Google Scholar 

  24. Schminkey DL, Groer M. Imitating a stress response: a new hypothesis about the innate immune system’s role in pregnancy. Med Hypotheses. 2014;82(6):721–9.

    Article  CAS  PubMed  Google Scholar 

  25. Saito S, Nakashima A, Shima T, Ito M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am J Reprod Immunol. 2010;63(6):601–10.

    Article  CAS  PubMed  Google Scholar 

  26. Li M, Piao L, Chen CP, Wu X, Yeh CC, Masch R, et al. Modulation of decidual macrophage polarization by macrophage colony-stimulating factor derived from first-trimester decidual cells: implication in preeclampsia. Am J Pathol. 2016;186(5):1258–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee CL, Guo Y, So KH, Vijayan M, Wong VH, Yao Y, et al. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype. Hum Reprod. 2015;30(10):2263–74.

    Article  PubMed  Google Scholar 

  28. Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 2009;9(1):62–70.

    Article  CAS  PubMed  Google Scholar 

  29. Sugimoto MA, Vago JP, Teixeira MM, Sousa LP. Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. J Immunol Res. 2016;2016:8239258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. John CD, Gavins FN, Buss NA, Cover PO, Buckingham JC. Annexin A1 and the formyl peptide receptor family: neuroendocrine and metabolic aspects. Curr Opin Pharmacol. 2008;8(6):765–76.

    Article  CAS  PubMed  Google Scholar 

  31. John CD, Christian HC, Morris JF, Flower RJ, Solito E, Buckingham JC. Annexin 1 and the regulation of endocrine function. Trends Endocrinol Metab. 2004;15(3):103–9.

    Article  CAS  PubMed  Google Scholar 

  32. Eke Gungor H, Tahan F, Gokahmetoglu S, Saraymen B. Decreased levels of lipoxin A4 and annexin A1 in wheezy infants. Int Arch Allergy Immunol. 2014;163(3):193–7.

    Article  CAS  PubMed  Google Scholar 

  33. Williams SL, Milne IR, Bagley CJ, Gamble JR, Vadas MA, Pitson SM, et al. A proinflammatory role for proteolytically cleaved annexin A1 in neutrophil transendothelial migration. J Immunol. 2010;185(5):3057–63.

    Article  CAS  PubMed  Google Scholar 

  34. Tsao FH, Meyer KC, Chen X, Rosenthal NS, Hu J. Degradation of annexin I in bronchoalveolar lavage fluid from patients with cystic fibrosis. Am J Respir Cell Mol Biol. 1998;18(1):120–8.

    Article  CAS  PubMed  Google Scholar 

  35. Cooray SN, Gobbetti T, Montero-Melendez T, McArthur S, Thompson D, Clark AJ, et al. Ligand-specific conformational change of the G-protein-coupled receptor ALX/FPR2 determines proresolving functional responses. Proc Natl Acad Sci U S A. 2013;110(45):18232–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Planagumà A, Kazani S, Marigowda G, Haworth O, Mariani TJ, Israel E, et al. Airway lipoxin A4 generation and lipoxin A4 receptor expression are decreased in severe asthma. Am J Respir Crit Care Med. 2008;178(6):574–82.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Perucci LO, Carneiro FS, Ferreira CN, Sugimoto MA, Soriani FM, Martins GG, et al. Annexin A1 is increased in the plasma of preeclamptic women. PLoS One. 2015;10(9):e0138475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Xu Z, Zhao F, Lin F, Xiang H, Wang N, Ye D, et al. Preeclampsia is associated with a deficiency of lipoxin A4, an endogenous anti-inflammatory mediator. Fertil Steril. 2014;102(1):282–90.e4.

    Article  CAS  PubMed  Google Scholar 

  39. Dong W, Yin L. Expression of lipoxin A4, TNFα and IL-1β in maternal peripheral blood, umbilical cord blood and placenta, and their significance in pre-eclampsia. Hypertens Pregnancy. 2014;33(4):449–56.

    Article  CAS  PubMed  Google Scholar 

  40. Behrouz GF, Farzaneh GS, Leila J, Jaleh Z, Eskandar KS. Presence of auto-antibody against two placental proteins, annexin A1 and vitamin D binding protein, in sera of women with pre-eclampsia. J Reprod Immunol. 2013;99(1–2):10–6.

    Article  CAS  PubMed  Google Scholar 

  41. Canzoneri BJ, Lewis DF, Groome L, Wang Y. Increased neutrophil numbers account for leukocytosis in women with preeclampsia. Am J Perinatol. 2009;26(10):729–32.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gupta AK, Gebhardt S, Hillermann R, Holzgreve W, Hahn S. Analysis of plasma elastase levels in early and late onset preeclampsia. Arch Gynecol Obstet. 2006;273(4):239–42.

    Article  CAS  PubMed  Google Scholar 

  43. Salama RH, Fathalla MM, Mekki AR, Elsadek B-K. Implication of umbilical cord in preeclampsia. Med Princ Pract. 2011;20(2):124–8.

    Article  PubMed  Google Scholar 

  44. Sun M, Liu Y, Gibb W. Distribution of annexin I and II in term human fetal membranes, decidua and placenta. Placenta. 1996;17(2–3):181–4.

    Article  CAS  PubMed  Google Scholar 

  45. Leffler H, Carlsson S, Hedlund M, Qian Y, Poirier F. Introduction to galectins. Glycoconj J. 2004;19(7–9):433–40.

    Google Scholar 

  46. Sato S, St-Pierre C, Bhaumik P, Nieminen J. Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev. 2009;230(1):172–87.

    Article  CAS  PubMed  Google Scholar 

  47. Rubinstein N, Ilarregui JM, Toscano MA, Rabinovich GA. The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens. 2004;64(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  48. Arikawa T, Simamura E, Shimada H, Nakamura T, Hatta T, Shoji H. Significance of sugar chain recognition by galectins and its involvement in disease-associated glycosylation. Congenit Anom (Kyoto). 2014;54(2):77–81.

    Article  CAS  Google Scholar 

  49. Vasta GR. Galectins as pattern recognition receptors: structure, function, and evolution. Adv Exp Med Biol. 2012;946:21–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Romaniuk MA, Negrotto S, Campetella O, Rabinovich GA, Schattner M. Identification of galectins as novel regulators of platelet signaling and function. IUBMB Life. 2011;63(7):521–7.

    Article  CAS  PubMed  Google Scholar 

  51. Blois SM, Conrad ML, Freitag N, Barrientos G. Galectins in angiogenesis: consequences for gestation. J Reprod Immunol. 2015;108:33–41.

    Article  CAS  PubMed  Google Scholar 

  52. Blois SM, Ilarregui JM, Tometten M, Garcia M, Orsal AS, Cordo-Russo R, et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nat Med. 2007;13(12):1450–7.

    Article  CAS  PubMed  Google Scholar 

  53. van der Leij J, van den Berg A, Blokzijl T, Harms G, van Goor H, Zwiers P, et al. Dimeric galectin-1 induces IL-10 production in T-lymphocytes: an important tool in the regulation of the immune response. J Pathol. 2004;204(5):511–8.

    Article  PubMed  CAS  Google Scholar 

  54. Kopcow HD, Rosetti F, Leung Y, Allan DS, Kutok JL, Strominger JL. T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proc Natl Acad Sci U S A. 2008;105(47):18472–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rostoker R, Yaseen H, Schif-Zuck S, Lichtenstein RG, Rabinovich GA, Ariel A. Galectin-1 induces 12/15-lipoxygenase expression in murine macrophages and favors their conversion toward a pro-resolving phenotype. Prostaglandins Other Lipid Mediat. 2013;107:85–94.

    Article  CAS  PubMed  Google Scholar 

  56. Jeschke U, Mayr D, Schiessl B, Mylonas I, Schulze S, Kuhn C, et al. Expression of galectin-1, −3 (gal-1, gal-3) and the Thomsen-Friedenreich (TF) antigen in normal, IUGR, preeclamptic and HELLP placentas. Placenta. 2007;28(11–12):1165–73.

    Article  CAS  PubMed  Google Scholar 

  57. Than NG, Erez O, Wildman DE, Tarca AL, Edwin SS, Abbas A, et al. Severe preeclampsia is characterized by increased placental expression of galectin-1. J Matern Fetal Neonatal Med. 2008;21(7):429–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Freitag N, Tirado-González I, Barrientos G, Herse F, Thijssen VL, Weedon-Fekjær SM, et al. Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia. Proc Natl Acad Sci U S A. 2013;110(28):11451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Blois SM, Dechend R, Barrientos G, Staff AC. A potential pathophysiological role for galectins and the renin-angiotensin system in preeclampsia. Cell Mol Life Sci. 2015;72(1):39–50.

    Article  CAS  PubMed  Google Scholar 

  60. Molvarec A, Blois SM, Stenczer B, Toldi G, Tirado-Gonzalez I, Ito M, et al. Peripheral blood galectin-1-expressing T and natural killer cells in normal pregnancy and preeclampsia. Clin Immunol. 2011;139(1):48–56.

    Article  CAS  PubMed  Google Scholar 

  61. Than NG, Pick E, Bellyei S, Szigeti A, Burger O, Berente Z, et al. Functional analyses of placental protein 13/galectin-13. Eur J Biochem. 2004;271(6):1065–78.

    Article  CAS  PubMed  Google Scholar 

  62. Orendi K, Gauster M, Moser G, Meiri H, Huppertz B. The choriocarcinoma cell line BeWo: syncytial fusion and expression of syncytium-specific proteins. Reproduction. 2010;140(5):759–66.

    Article  CAS  PubMed  Google Scholar 

  63. Than NG, Romero R, Xu Y, Erez O, Xu Z, Bhatti G, et al. Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta. 2014;35(11):855–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Than NG, Romero R, Goodman M, Weckle A, Xing J, Dong Z, et al. A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc Natl Acad Sci U S A. 2009;106(24):9731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kliman HJ, Sammar M, Grimpel YI, Lynch SK, Milano KM, Pick E, et al. Placental protein 13 and decidual zones of necrosis: an immunologic diversion that may be linked to preeclampsia. Reprod Sci. 2012;19(1):16–30.

    Article  CAS  PubMed  Google Scholar 

  66. Than NG, Abdul Rahman O, Magenheim R, Nagy B, Fule T, Hargitai B, et al. Placental protein 13 (galectin-13) has decreased placental expression but increased shedding and maternal serum concentrations in patients presenting with preterm pre-eclampsia and HELLP syndrome. Virchows Arch. 2008;453(4):387–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huppertz B, Sammar M, Chefetz I, Neumaier-Wagner P, Bartz C, Meiri H. Longitudinal determination of serum placental protein 13 during development of preeclampsia. Fetal Diagn Ther. 2008;24(3):230–6.

    Article  PubMed  Google Scholar 

  68. Gonen R, Shahar R, Grimpel YI, Chefetz I, Sammar M, Meiri H, et al. Placental protein 13 as an early marker for pre-eclampsia: a prospective longitudinal study. BJOG. 2008;115(12):1465–72.

    Article  CAS  PubMed  Google Scholar 

  69. Sekizawa A, Purwosunu Y, Yoshimura S, Nakamura M, Shimizu H, Okai T, et al. PP13 mRNA expression in trophoblasts from preeclamptic placentas. Reprod Sci. 2009;16(4):408–13.

    Article  CAS  PubMed  Google Scholar 

  70. Shimizu H, Sekizawa A, Purwosunu Y, Nakamura M, Farina A, Rizzo N, et al. PP13 mRNA expression in the cellular component of maternal blood as a marker for preeclampsia. Prenat Diagn. 2009;29(13):1231–6.

    Article  CAS  PubMed  Google Scholar 

  71. Farina A, Zucchini C, Sekizawa A, Purwosunu Y, de Sanctis P, Santarsiero G, et al. Performance of messenger RNAs circulating in maternal blood in the prediction of preeclampsia at 10–14 weeks. Am J Obstet Gynecol. 2010;203(6):575.e1–7.

    Article  CAS  Google Scholar 

  72. Gebhardt S, Bruiners N, Hillermann R. A novel exonic variant (221delT) in the LGALS13 gene encoding placental protein 13 (PP13) is associated with preterm labour in a low risk population. J Reprod Immunol. 2009;82(2):166–73.

    Article  CAS  PubMed  Google Scholar 

  73. Than NG, Balogh A, Romero R, Kárpáti E, Erez O, Szilágyi A, et al. Placental protein 13 (PP13)—a placental Immunoregulatory galectin protecting pregnancy. Front Immunol. 2014;5:348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Huppertz B, Meiri H, Gizurarson S, Osol G, Sammar M. Placental protein 13 (PP13): a new biological target shifting individualized risk assessment to personalized drug design combating pre-eclampsia. Hum Reprod Update. 2013;19(4):391–405.

    Article  CAS  PubMed  Google Scholar 

  75. Sammar M, Nisemblat S, Fleischfarb Z, Golan A, Sadan O, Meiri H, et al. Placenta-bound and body fluid PP13 and its mRNA in normal pregnancy compared to preeclampsia, HELLP and preterm delivery. Placenta. 2011;32(Suppl):S30–6.

    Article  CAS  PubMed  Google Scholar 

  76. Zabel BA, Kwitniewski M, Banas M, Zabieglo K, Murzyn K, Cichy J. Chemerin regulation and role in host defense. Am J Clin Exp Immunol. 2014;3(1):1–19.

    PubMed  PubMed Central  Google Scholar 

  77. Carlino C, Trotta E, Stabile H, Morrone S, Bulla R, Soriani A, et al. Chemerin regulates NK cell accumulation and endothelial cell morphogenesis in the decidua during early pregnancy. J Clin Endocrinol Metab. 2012;97(10):3603–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tessier DR, Yockell-Lelievre J, Gruslin A. Uterine spiral artery remodeling: the role of uterine natural killer cells and extravillous trophoblasts in normal and high-risk human pregnancies. Am J Reprod Immunol. 2015;74(1):1–11.

    Article  PubMed  Google Scholar 

  79. Kaur J, Adya R, Tan BK, Chen J, Randeva HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun. 2010;391(4):1762–8.

    Article  CAS  PubMed  Google Scholar 

  80. Mariani F, Roncucci L. Chemerin/chemR23 axis in inflammation onset and resolution. Inflamm Res. 2015;64(2):85–95.

    Article  CAS  PubMed  Google Scholar 

  81. Moretta A, Marcenaro E, Parolini S, Ferlazzo G, Moretta L. NK cells at the interface between innate and adaptive immunity. Cell Death Differ. 2008;15(2):226–33.

    Article  CAS  PubMed  Google Scholar 

  82. Hespel C, Moser M. Role of inflammatory dendritic cells in innate and adaptive immunity. Eur J Immunol. 2012;42(10):2535–43.

    Article  CAS  PubMed  Google Scholar 

  83. Zabel BA, Allen SJ, Kulig P, Allen JA, Cichy J, Handel TM, et al. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem. 2005;280(41):34661–6.

    Article  CAS  PubMed  Google Scholar 

  84. Garces MF, Sanchez E, Ruiz-Parra AI, Rubio-Romero JA, Angel-Muller E, Suarez MA, et al. Serum chemerin levels during normal human pregnancy. Peptides. 2013;42:138–43.

    Article  CAS  PubMed  Google Scholar 

  85. Kasher-Meron M, Mazaki-Tovi S, Barhod E, Hemi R, Haas J, Gat I, et al. Chemerin concentrations in maternal and fetal compartments: implications for metabolic adaptations to normal human pregnancy. J Perinat Med. 2014;42(3):371–8.

    Article  CAS  PubMed  Google Scholar 

  86. Wang L, Yang T, Ding Y, Zhong Y, Yu L, Peng M. Chemerin plays a protective role by regulating human umbilical vein endothelial cell-induced nitric oxide signaling in preeclampsia. Endocrine. 2015;48(1):299–308.

    Article  CAS  PubMed  Google Scholar 

  87. Duan DM, Niu JM, Lei Q, Lin XH, Chen X. Serum levels of the adipokine chemerin in preeclampsia. J Perinat Med. 2012;40(2):121–7.

    Article  CAS  Google Scholar 

  88. Stepan H, Philipp A, Roth I, Kralisch S, Jank A, Schaarschmidt W, et al. Serum levels of the adipokine chemerin are increased in preeclampsia during and 6 months after pregnancy. Regul Pept. 2011;168(1–3):69–72.

    Article  CAS  PubMed  Google Scholar 

  89. Xu QL, Zhu M, Jin Y, Wang N, Xu HX, Quan LM, et al. The predictive value of the first-trimester maternal serum chemerin level for pre-eclampsia. Peptides. 2014;62:150–4.

    Article  CAS  PubMed  Google Scholar 

  90. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Claria J, Serhan CN. Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A. 1995;92(21):9475–9.

  92. Serhan CN. Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids. 2005;73(3–4):141–62.

    Article  CAS  PubMed  Google Scholar 

  93. Fierro IM. Angiogenesis and lipoxins. Prostaglandins Leukot Essent Fatty Acids. 2005;73(3–4):271–5.

    Article  CAS  PubMed  Google Scholar 

  94. Choi G, Hwang SW. Modulation of the activities of neuronal ion channels by fatty acid-derived pro-resolvents. Front Physiol. 2016;7:523.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Levy BD, Serhan CN. Exploring new approaches to the treatment of asthma: potential roles for lipoxins and aspirin-triggered lipid mediators. Drugs Today (Barc). 2003;39(5):373–84.

    Article  CAS  Google Scholar 

  96. Lee TH. Lipoxin A4: a novel anti-inflammatory molecule? Thorax. 1995;50(2):111–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gavins FN, Sawmynaden P, Chatterjee BE, Perretti M. A twist in anti-inflammation: annexin 1 acts via the lipoxin A4 receptor. Prostaglandins Leukot Essent Fatty Acids. 2005;73(3–4):211–9.

    Article  CAS  PubMed  Google Scholar 

  98. Wang J, Huang Y, Zhou J, Liu X. Effect of lipoxin A4 on IL-1β production of monocytes and its possible mechanism in severe preeclampsia. J Huazhong Univ Sci Technolog Med Sci. 2010;30(6):767–70.

    Article  CAS  PubMed  Google Scholar 

  99. Gil-Villa AM, Norling LV, Serhan CN, Cordero D, Rojas M, Cadavid A. Aspirin triggered-lipoxin A4 reduces the adhesion of human polymorphonuclear neutrophils to endothelial cells initiated by preeclamptic plasma. Prostaglandins Leukot Essent Fatty Acids. 2012;87(4–5):127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lin F, Zeng P, Xu Z, Ye D, Yu X, Wang N, et al. Treatment of lipoxin a(4) and its analogue on low-dose endotoxin induced preeclampsia in rat and possible mechanisms. Reprod Toxicol. 2012;34(4):677–85.

    Article  CAS  PubMed  Google Scholar 

  101. Huang LL, Su S, Awale R, Zhang XY, Zhong LL, Tang H. Expression of anti-inflammatory mediator lipoxin A4 and inflammation responsive transcriptive factors NF-kappa B in patients with preeclampsia. Clin Exp Obstet Gynecol. 2014;41(5):561–6.

    CAS  PubMed  Google Scholar 

  102. Perucci LO, Santos PC, Ribeiro LS, Souza DG, Gomes KB, Dusse LM, et al. Lipoxin A4 is increased in the plasma of preeclamptic women. Am J Hypertens. 2016;29(10):1179–85.

    Article  PubMed  Google Scholar 

  103. Cooper CE, Brown GC. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr. 2008;40(5):533–9.

    Article  CAS  PubMed  Google Scholar 

  104. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002;16(13):1792–8.

    Article  CAS  PubMed  Google Scholar 

  105. Kajimura M, Fukuda R, Bateman RM, Yamamoto T, Suematsu M. Interactions of multiple gas-transducing systems: hallmarks and uncertainties of CO, NO, and H2S gas biology. Antioxid Redox Signal. 2010;13(2):157–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lyall F. Development of the utero-placental circulation: the role of carbon monoxide and nitric oxide in trophoblast invasion and spiral artery transformation. Microsc Res Tech. 2003;60(4):402–11.

    Article  CAS  PubMed  Google Scholar 

  107. Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237(1):208–19.

    Article  CAS  PubMed  Google Scholar 

  108. Nagy G, Koncz A, Telarico T, Fernandez D, Ersek B, Buzás E, et al. Central role of nitric oxide in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 2010;12(3):210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84(24):9265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sogo N, Magid KS, Shaw CA, Webb DJ, Megson IL. Inhibition of human platelet aggregation by nitric oxide donor drugs: relative contribution of cGMP-independent mechanisms. Biochem Biophys Res Commun. 2000;279(2):412–9.

    Article  CAS  PubMed  Google Scholar 

  111. Ward C, Wong TH, Murray J, Rahman I, Haslett C, Chilvers ER, et al. Induction of human neutrophil apoptosis by nitric oxide donors: evidence for a caspase-dependent, cyclic-GMP-independent, mechanism. Biochem Pharmacol. 2000;59(3):305–14.

    Article  CAS  PubMed  Google Scholar 

  112. Lo Faro ML, Fox B, Whatmore JL, Winyard PG, Whiteman M. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide. 2014;41:38–47.

    Article  CAS  PubMed  Google Scholar 

  113. Laroux FS, Lefer DJ, Kawachi S, Scalia R, Cockrell AS, Gray L, et al. Role of nitric oxide in the regulation of acute and chronic inflammation. Antioxid Redox Signal. 2000;2(3):391–6.

    Article  CAS  PubMed  Google Scholar 

  114. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 2003;54(4):469–87.

    CAS  PubMed  Google Scholar 

  115. Shaw CA, Taylor EL, Fox S, Megson IL, Rossi AG. Differential susceptibility to nitric oxide-evoked apoptosis in human inflammatory cells. Free Radic Biol Med. 2011;50(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  116. Huang LT, Hsieh CS, Chang KA, Tain YL. Roles of nitric oxide and asymmetric dimethylarginine in pregnancy and fetal programming. Int J Mol Sci. 2012;13(11):14606–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Morris NH, Sooranna SR, Learmont JG, Poston L, Ramsey B, Pearson JD, et al. Nitric oxide synthase activities in placental tissue from normotensive, pre-eclamptic and growth retarded pregnancies. Br J Obstet Gynaecol. 1995;102(9):711–4.

    Article  CAS  PubMed  Google Scholar 

  118. Böger RH, Diemert A, Schwedhelm E, Lüneburg N, Maas R, Hecher K. The role of nitric oxide synthase inhibition by asymmetric dimethylarginine in the pathophysiology of preeclampsia. Gynecol Obstet Investig. 2010;69(1):1–13.

    Article  CAS  Google Scholar 

  119. López-Jaramillo P, Arenas WD, García RG, Rincon MY, López M. The role of the L-arginine-nitric oxide pathway in preeclampsia. Ther Adv Cardiovasc Dis. 2008;2(4):261–75.

    Article  PubMed  Google Scholar 

  120. Bian Z, Shixia C, Duan T. First-trimester maternal serum levels of sFLT1, PGF and ADMA predict preeclampsia. PLoS One. 2015;10(4):e0124684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Alpoim PN, Godoi LC, Freitas LG, Gomes KB, Dusse LM. Assessment of L-arginine asymmetric 1 dimethyl (ADMA) in early-onset and late-onset (severe) preeclampsia. Nitric Oxide. 2013;33:81–2.

    Article  CAS  PubMed  Google Scholar 

  122. Alpoim PN, Gomes KB, Pinheiro MB, Godoi LC, Jardim LL, Muniz LG, et al. Polymorphisms in endothelial nitric oxide synthase gene in early and late severe preeclampsia. Nitric Oxide. 2014;42:19–23.

    Article  CAS  PubMed  Google Scholar 

  123. Doridot L, Passet B, Mehats C, Rigourd V, Barbaux S, Ducat A, et al. Preeclampsia-like symptoms induced in mice by fetoplacental expression of STOX1 are reversed by aspirin treatment. Hypertension. 2013;61(3):662–8.

    Article  CAS  PubMed  Google Scholar 

  124. van Dijk M, Mulders J, Poutsma A, Konst AA, Lachmeijer AM, Dekker GA, et al. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet. 2005;37(5):514–9.

    Article  PubMed  CAS  Google Scholar 

  125. Doridot L, Chatre L, Ducat A, Vilotte JL, Lombes A, Mehats C, et al. Nitroso-redox balance and mitochondrial homeostasis are regulated by STOX1, a pre-eclampsia-associated gene. Antioxid Redox Signal. 2014;21(6):819–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. van Dijk M, van Bezu J, van Abel D, Dunk C, Blankenstein MA, Oudejans CB, et al. The STOX1 genotype associated with pre-eclampsia leads to a reduction of trophoblast invasion by alpha-T-catenin upregulation. Hum Mol Genet. 2010;19(13):2658–67.

    Article  PubMed  CAS  Google Scholar 

  127. Nanaev A, Chwalisz K, Frank HG, Kohnen G, Hegele-Hartung C, Kaufmann P. Physiological dilation of uteroplacental arteries in the guinea pig depends on nitric oxide synthase activity of extravillous trophoblast. Cell Tissue Res. 1995;282(3):407–21.

    Article  CAS  PubMed  Google Scholar 

  128. Holwerda KM, Faas MM, van Goor H, Lely AT. Gasotransmitters: a solution for the therapeutic dilemma in preeclampsia? Hypertension. 2013;62(4):653–9.

    Article  CAS  PubMed  Google Scholar 

  129. Meher S, Duley L. Nitric oxide for preventing pre-eclampsia and its complications. Cochrane Database Syst Rev. 2007;2:CD006490.

    Google Scholar 

  130. Olas B. Hydrogen sulfide in signaling pathways. Clin Chim Acta. 2015;439:212–8.

    Article  CAS  PubMed  Google Scholar 

  131. Kida M, Sugiyama T, Yoshimoto T, Ogawa Y. Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells. Eur J Pharm Sci. 2013;48(1–2):211–5.

    Article  CAS  PubMed  Google Scholar 

  132. Szabó C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov. 2007;6(11):917–35.

    Article  PubMed  CAS  Google Scholar 

  133. Collin M, Anuar FB, Murch O, Bhatia M, Moore PK, Thiemermann C. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol. 2005;146(4):498–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang H, Zhi L, Moochhala S, Moore PK, Bhatia M. Hydrogen sulfide acts as an inflammatory mediator in cecal ligation and puncture-induced sepsis in mice by upregulating the production of cytokines and chemokines via NF-kappaB. Am J Physiol Lung Cell Mol Physiol. 2007;292(4):L960–71.

    Article  CAS  PubMed  Google Scholar 

  135. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology. 2009;137(2):569–78. 78.e1

    Article  CAS  PubMed  Google Scholar 

  136. Mariggio MA, Minunno V, Riccardi S, Santacroce R, De Rinaldis P, Fumarulo R. Sulfide enhancement of PMN apoptosis. Immunopharmacol Immunotoxicol. 1998;20(3):399–408.

    Article  CAS  PubMed  Google Scholar 

  137. Miao L, Shen X, Whiteman M, Xin H, Shen Y, Xin X, et al. Hydrogen sulfide mitigates myocardial infarction via promotion of mitochondrial biogenesis-dependent M2 polarization of macrophages. Antioxid Redox Signal. 2016;25(5):268–81.

    Article  CAS  PubMed  Google Scholar 

  138. Dufton N, Natividad J, Verdu EF, Wallace JL. Hydrogen sulfide and resolution of acute inflammation: a comparative study utilizing a novel fluorescent probe. Sci Rep. 2012;2:499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Brancaleone V, Mitidieri E, Flower RJ, Cirino G, Perretti M. Annexin A1 mediates hydrogen sulfide properties in the control of inflammation. J Pharmacol Exp Ther. 2014;351(1):96–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A. 2009;106(51):21972–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Patel P, Vatish M, Heptinstall J, Wang R, Carson RJ. The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod Biol Endocrinol. 2009;7:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Wang K, Ahmad S, Cai M, Rennie J, Fujisawa T, Crispi F, et al. Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation. 2013;127(25):2514–22.

    Article  CAS  PubMed  Google Scholar 

  143. Cindrova-Davies T, Herrera EA, Niu Y, Kingdom J, Giussani DA, Burton GJ. Reduced cystathionine γ-lyase and increased miR-21 expression are associated with increased vascular resistance in growth-restricted pregnancies: hydrogen sulfide as a placental vasodilator. Am J Pathol. 2013;182(4):1448–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Holwerda KM, Bos EM, Rajakumar A, Ris-Stalpers C, van Pampus MG, Timmer A, et al. Hydrogen sulfide producing enzymes in pregnancy and preeclampsia. Placenta. 2012;33(6):518–21.

    Article  CAS  PubMed  Google Scholar 

  145. Roes EM, Raijmakers MT, Boo TM, Zusterzeel PL, Merkus HM, Peters WH, et al. Oral N-acetylcysteine administration does not stabilise the process of established severe preeclampsia. Eur J Obstet Gynecol Reprod Biol. 2006;127(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  146. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol. 2009;41(3):251–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005;57(4):585–630.

    Article  CAS  PubMed  Google Scholar 

  148. Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE. Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med (Berl). 2008;86(3):267–79.

    Article  CAS  Google Scholar 

  149. Peers C, Boyle JP, Scragg JL, Dallas ML, Al-Owais MM, Hettiarachichi NT, et al. Diverse mechanisms underlying the regulation of ion channels by carbon monoxide. Br J Pharmacol. 2015;172(6):1546–56.

    Article  CAS  PubMed  Google Scholar 

  150. Urquhart P, Rosignoli G, Cooper D, Motterlini R, Perretti M. Carbon monoxide-releasing molecules modulate leukocyte-endothelial interactions under flow. J Pharmacol Exp Ther. 2007;321(2):656–62.

    Article  CAS  PubMed  Google Scholar 

  151. Morse D, Pischke SE, Zhou Z, Davis RJ, Flavell RA, Loop T, et al. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem. 2003;278(39):36993–8.

    Article  CAS  PubMed  Google Scholar 

  152. Otterbein LE, May A, Chin BY. Carbon monoxide increases macrophage bacterial clearance through toll-like receptor (TLR)4 expression. Cell Mol Biol (Noisy-le-grand). 2005;51(5):433–40.

    CAS  Google Scholar 

  153. Chiang N, Shinohara M, Dalli J, Mirakaj V, Kibi M, Choi AM, et al. Inhaled carbon monoxide accelerates resolution of inflammation via unique proresolving mediator-heme oxygenase-1 circuits. J Immunol. 2013;190(12):6378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lyall F, Barber A, Myatt L, Bulmer JN, Robson SC. Hemeoxygenase expression in human placenta and placental bed implies a role in regulation of trophoblast invasion and placental function. FASEB J. 2000;14(1):208–19.

    CAS  PubMed  Google Scholar 

  155. Bainbridge SA, Smith GN. HO in pregnancy. Free Radic Biol Med. 2005;38(8):979–88.

    Article  CAS  PubMed  Google Scholar 

  156. McCaig D, Lyall F. Inhibitors of heme oxygenase reduce invasion of human primary cytotrophoblast cells in vitro. Placenta. 2009;30(6):536–8.

    Article  CAS  PubMed  Google Scholar 

  157. Sollwedel A, Bertoja AZ, Zenclussen ML, Gerlof K, Lisewski U, Wafula P, et al. Protection from abortion by heme oxygenase-1 up-regulation is associated with increased levels of bag-1 and neuropilin-1 at the fetal-maternal interface. J Immunol. 2005;175(8):4875–85.

    Article  CAS  PubMed  Google Scholar 

  158. Baum M, Schiff E, Kreiser D, Dennery PA, Stevenson DK, Rosenthal T, et al. End-tidal carbon monoxide measurements in women with pregnancy-induced hypertension and preeclampsia. Am J Obstet Gynecol. 2000;183(4):900–3.

    Article  CAS  PubMed  Google Scholar 

  159. Yusuf K, Kamaluddeen M, Wilson RD, Akierman A. Carboxyhemoglobin levels in umbilical cord blood of women with pre-eclampsia and intrauterine growth restriction. J Perinat Med. 2012;40(6):619–24.

    Article  CAS  PubMed  Google Scholar 

  160. Zhai D, Guo Y, Smith G, Krewski D, Walker M, Wen SW. Maternal exposure to moderate ambient carbon monoxide is associated with decreased risk of preeclampsia. Am J Obstet Gynecol. 2012;207(1):57.e1–9.

    Article  CAS  Google Scholar 

  161. Wikström AK, Stephansson O, Cnattingius S. Tobacco use during pregnancy and preeclampsia risk: effects of cigarette smoking and snuff. Hypertension. 2010;55(5):1254–9.

    Article  PubMed  CAS  Google Scholar 

  162. Maebayashi Asanuma A, Yamamoto T, Azuma H, Kato E, Yamamoto N, Murase T, et al. Expression of placenta growth factor, soluble fms-like tyrosine kinase-1, metal-responsive transcription factor-1, heme oxygenase 1 and hypoxia inducible factor-1α mRNAs in pre-eclampsia placenta and the effect of pre-eclampsia sera on their expression of choriocarcinoma cells. J Obstet Gynaecol Res. 2014;40(10):2095–103.

    Article  PubMed  CAS  Google Scholar 

  163. Zenclussen AC, Lim E, Knoeller S, Knackstedt M, Hertwig K, Hagen E, et al. Heme oxygenases in pregnancy II: HO-2 is downregulated in human pathologic pregnancies. Am J Reprod Immunol. 2003;50(1):66–76.

    Article  CAS  PubMed  Google Scholar 

  164. Barber A, Robson SC, Myatt L, Bulmer JN, Lyall F. Heme oxygenase expression in human placenta and placental bed: reduced expression of placenta endothelial HO-2 in preeclampsia and fetal growth restriction. FASEB J. 2001;15(7):1158–68.

    Article  CAS  PubMed  Google Scholar 

  165. Eide IP, Isaksen CV, Salvesen KA, Langaas M, Schønberg SA, Austgulen R. Decidual expression and maternal serum levels of heme oxygenase 1 are increased in pre-eclampsia. Acta Obstet Gynecol Scand. 2008;87(3):272–9.

    Article  CAS  PubMed  Google Scholar 

  166. Tong S, Kaitu’u-Lino TJ, Onda K, Beard S, Hastie R, Binder NK, et al. Heme oxygenase-1 is not decreased in preeclamptic placenta and does not negatively regulate placental soluble fms-like tyrosine kinase-1 or soluble endoglin secretion. Hypertension. 2015;66(5):1073–81.

    Article  CAS  PubMed  Google Scholar 

  167. Brownfoot FC, Tong S, Hannan NJ, Binder NK, Walker SP, Cannon P, et al. Effects of pravastatin on human placenta, endothelium, and women with severe preeclampsia. Hypertension. 2015;66(3):687–97. discussion 445

    Article  CAS  PubMed  Google Scholar 

  168. Ramma W, Ahmed A. Therapeutic potential of statins and the induction of heme oxygenase-1 in preeclampsia. J Reprod Immunol. 2014;101-102:153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. McCarthy FP, Drewlo S, Kingdom J, Johns EJ, Walsh SK, Kenny LC. Peroxisome proliferator-activated receptor-γ as a potential therapeutic target in the treatment of preeclampsia. Hypertension. 2011;58(2):280–6.

    Article  CAS  PubMed  Google Scholar 

  170. Venditti CC, Casselman R, Young I, Karumanchi SA, Smith GN. Carbon monoxide prevents hypertension and proteinuria in an adenovirus sFlt-1 preeclampsia-like mouse model. PLoS One. 2014;9(9):e106502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Prado MA, Reis RA, Prado VF, de Mello MC, Gomez MV, de Mello FG. Regulation of acetylcholine synthesis and storage. Neurochem Int. 2002;41(5):291–9.

    Article  CAS  PubMed  Google Scholar 

  173. Kellogg Jr DL, Zhao JL, Coey U, Green JV. Acetylcholine-induced vasodilation is mediated by nitric oxide and prostaglandins in human skin. J Appl Physiol (1985). 2005;98(2):629–32.

    Article  CAS  Google Scholar 

  174. Laurent P, Safar ME, Meaune S, Blacher J. Influence of L-nitro-arginine methyl ester, acetylcholine, and adenosine on mean blood pressure, pulse pressure, and pulse pressure amplification in rats. J Cardiovasc Pharmacol. 2003;41(2):210–8.

    Article  CAS  PubMed  Google Scholar 

  175. Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol. 2012;30:313–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med. 2012;209(6):1057–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Sundman E, Olofsson PS. Neural control of the immune system. Adv Physiol Educ. 2014;38(2):135–9.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Báez-Pagán CA, Delgado-Vélez M, Lasalde-Dominicci JA. Activation of the macrophage α7 nicotinic acetylcholine receptor and control of inflammation. J NeuroImmune Pharmacol. 2015;10(3):468–76.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Tsoyi K, Jang HJ, Kim JW, Chang HK, Lee YS, Pae HO, et al. Stimulation of alpha7 nicotinic acetylcholine receptor by nicotine attenuates inflammatory response in macrophages and improves survival in experimental model of sepsis through heme oxygenase-1 induction. Antioxid Redox Signal. 2011;14(11):2057–70.

    Article  CAS  PubMed  Google Scholar 

  180. Maldifassi MC, Atienza G, Arnalich F, López-Collazo E, Cedillo JL, Martín-Sánchez C, et al. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages. PLoS One. 2014;9(9):e108397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Huston JM, Rosas-Ballina M, Xue X, Dowling O, Ochani K, Ochani M, et al. Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol. 2009;183(1):552–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mariggiò MA, Guida L, Laforgia A, Santacroce R, Curci E, Montemurro P, et al. Nicotine effects on polymorphonuclear cell apoptosis and lipopolysaccharide-induced monocyte functions. A possible role in periodontal disease? J Periodontal Res. 2001;36(1):32–9.

    Article  PubMed  Google Scholar 

  183. van der Zanden EP, Snoek SA, Heinsbroek SE, Stanisor OI, Verseijden C, Boeckxstaens GE, et al. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology. 2009;137(3):1029–39. 39.e1-4

    Article  PubMed  CAS  Google Scholar 

  184. Lee RH, Vazquez G. Evidence for a prosurvival role of alpha-7 nicotinic acetylcholine receptor in alternatively (M2)-activated macrophages. Physiol Rep. 2013;1(7):e00189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J Clin Invest. 2007;117(2):289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Mirakaj V, Dalli J, Granja T, Rosenberger P, Serhan CN. Vagus nerve controls resolution and pro-resolving mediators of inflammation. J Exp Med. 2014;211(6):1037–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang CC, Chao TC, Kuo TB, Yin CS, Chen HI. Preeclamptic pregnancy is associated with increased sympathetic and decreased parasympathetic control of HR. Am J Physiol Heart Circ Physiol. 2000;278(4):H1269–73.

    CAS  PubMed  Google Scholar 

  188. Dowling O, Rochelson B, Way K, Al-Abed Y, Metz CN. Nicotine inhibits cytokine production by placenta cells via NFkappaB: potential role in pregnancy-induced hypertension. Mol Med. 2007;13(11–12):576–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Liu Y, Yang J, Bao J, Li X, Ye A, Zhang G, et al. Activation of the cholinergic anti-inflammatory pathway by nicotine ameliorates lipopolysaccharide-induced preeclampsia-like symptoms in pregnant rats. Placenta. 2017;49:23–32.

    Article  CAS  PubMed  Google Scholar 

  190. Mimura K, Tomimatsu T, Sharentuya N, Tskitishvili E, Kinugasa-Taniguchi Y, Kanagawa T, et al. Nicotine restores endothelial dysfunction caused by excess sFlt1 and sEng in an in vitro model of preeclamptic vascular endothelium: a possible therapeutic role of nicotinic acetylcholine receptor (nAChR) agonists for preeclampsia. Am J Obstet Gynecol. 2010;202(5):464 e1–6.

    Article  CAS  Google Scholar 

  191. Machaalani R, Ghazavi E, David RV, Hinton T, Makris A, Hennessy A. Nicotinic acetylcholine receptors (nAChR) are increased in the pre-eclamptic placenta. Hypertens Pregnancy. 2015;34(2):227–40.

    Article  CAS  PubMed  Google Scholar 

  192. Kwon JY, Kim YH, Kim SH, Kang MH, Maeng YS, Lee KY, et al. Difference in the expression of alpha 7 nicotinic receptors in the placenta in normal versus severe preeclampsia pregnancies. Eur J Obstet Gynecol Reprod Biol. 2007;132(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  193. Bradford D, Cole SJ, Cooper HM. Netrin-1: diversity in development. Int J Biochem Cell Biol. 2009;41(3):487–93.

    Article  CAS  PubMed  Google Scholar 

  194. Ly NP, Komatsuzaki K, Fraser IP, Tseng AA, Prodhan P, Moore KJ, et al. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci U S A. 2005;102(41):14729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Aherne CM, Collins CB, Masterson JC, Tizzano M, Boyle TA, Westrich JA, et al. Neuronal guidance molecule netrin-1 attenuates inflammatory cell trafficking during acute experimental colitis. Gut. 2012;61(5):695–705.

    Article  CAS  PubMed  Google Scholar 

  196. Ranganathan PV, Jayakumar C, Mohamed R, Dong Z, Ramesh G. Netrin-1 regulates the inflammatory response of neutrophils and macrophages, and suppresses ischemic acute kidney injury by inhibiting COX-2-mediated PGE2 production. Kidney Int. 2013;83(6):1087–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tadagavadi RK, Wang W, Ramesh G. Netrin-1 regulates Th1/Th2/Th17 cytokine production and inflammation through UNC5B receptor and protects kidney against ischemia-reperfusion injury. J Immunol. 2010;185(6):3750–8.

    Article  CAS  PubMed  Google Scholar 

  198. Ranganathan PV, Jayakumar C, Ramesh G. Netrin-1-treated macrophages protect the kidney against ischemia-reperfusion injury and suppress inflammation by inducing M2 polarization. Am J Physiol Renal Physiol. 2013;304(7):F948–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Schlegel M, Köhler D, Körner A, Granja T, Straub A, Giera M, et al. The neuroimmune guidance cue netrin-1 controls resolution programs and promotes liver regeneration. Hepatology. 2015.

  200. Carney EF. Diabetic nephropathy: netrin-1 expression in proximal tubular epithelial cells protects against kidney inflammation and injury. Nat Rev Nephrol. 2012;8(12):681.

    Article  PubMed  Google Scholar 

  201. Mirakaj V, Gatidou D, Pötzsch C, König K, Rosenberger P. Netrin-1 signaling dampens inflammatory peritonitis. J Immunol. 2011;186(1):549–55.

    Article  CAS  PubMed  Google Scholar 

  202. Podjaski C, Alvarez JI, Bourbonniere L, Larouche S, Terouz S, Bin JM, et al. Netrin 1 regulates blood-brain barrier function and neuroinflammation. Brain. 2015;138(Pt 6):1598–612.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Yang Y, Zou L, Xu KS. Expression of netrin-1 in placenta from patients with pre-eclampsia and the relation to placental angiogenesis. Zhonghua Fu Chan Ke Za Zhi. 2006;41(9):597–600.

    PubMed  Google Scholar 

  204. López-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2010;299(4):H959–74.

    Article  PubMed  CAS  Google Scholar 

  205. Powers JC, Odake S, Oleksyszyn J, Hori H, Ueda T, Boduszek B, et al. Proteases—structures, mechanism and inhibitors. Agents Actions Suppl. 1993;42:3–18.

    CAS  PubMed  Google Scholar 

  206. Mancek-Keber M. Inflammation-mediating proteases: structure, function in (patho) physiology and inhibition. Protein Pept Lett. 2014;21(12):1209–29.

    CAS  PubMed  Google Scholar 

  207. Greene CM, McElvaney NG. Proteases and antiproteases in chronic neutrophilic lung disease—relevance to drug discovery. Br J Pharmacol. 2009;158(4):1048–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Apte SS, Parks WC. Metalloproteinases: a parade of functions in matrix biology and an outlook for the future. Matrix Biol. 2015;44-46:1–6.

    Article  CAS  PubMed  Google Scholar 

  209. Cohen M, Meisser A, Bischof P. Metalloproteinases and human placental invasiveness. Placenta. 2006;27(8):783–93.

    Article  CAS  PubMed  Google Scholar 

  210. Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol. 2011;12(11):233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 2013;13(9):649–65.

    Article  CAS  PubMed  Google Scholar 

  212. Nissinen L, Kähäri VM. Matrix metalloproteinases in inflammation. Biochim Biophys Acta. 2014;1840(8):2571–80.

    Article  CAS  PubMed  Google Scholar 

  213. Black RA, Doedens JR, Mahimkar R, Johnson R, Guo L, Wallace A, et al. Substrate specificity and inducibility of TACE (tumour necrosis factor alpha-converting enzyme) revisited: the ala-Val preference, and induced intrinsic activity. Biochem Soc Symp. 2003;70:39–52.

    Article  CAS  Google Scholar 

  214. Tang J, Zarbock A, Gomez I, Wilson CL, Lefort CT, Stadtmann A, et al. Adam17-dependent shedding limits early neutrophil influx but does not alter early monocyte recruitment to inflammatory sites. Blood. 2011;118(3):786–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Wang Y, Robertson JD, Walcheck B. Different signaling pathways stimulate a disintegrin and metalloprotease-17 (ADAM17) in neutrophils during apoptosis and activation. J Biol Chem. 2011;286(45):38980–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lakatos G, Hritz I, Varga MZ, Juhász M, Miheller P, Cierny G, et al. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Dig Dis. 2012;30(3):289–95.

    Article  PubMed  Google Scholar 

  217. Ma R, Gu Y, Groome LJ, Wang Y. ADAM17 regulates TNFα production by placental trophoblasts. Placenta. 2011;32(12):975–80.

    Article  CAS  PubMed  Google Scholar 

  218. Ma R, Gu B, Gu Y, Groome LJ, Wang Y. Down-regulation of TIMP3 leads to increase in TACE expression and TNFα production by placental trophoblast cells. Am J Reprod Immunol. 2014;71(5):427–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Perucci LO, Gomes KB, Freitas LG, Godoi LC, Alpoim PN, Pinheiro MB, et al. Soluble endoglin, transforming growth factor-Beta 1 and soluble tumor necrosis factor alpha receptors in different clinical manifestations of preeclampsia. PLoS One. 2014;9(5):e97632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  220. Pinheiro MB, Martins-Filho OA, Mota AP, Alpoim PN, Godoi LC, Silveira AC, et al. Severe preeclampsia goes along with a cytokine network disturbance towards a systemic inflammatory state. Cytokine. 2013;62(1):165–73.

    Article  CAS  PubMed  Google Scholar 

  221. Vince GS, Starkey PM, Austgulen R, Kwiatkowski D, Redman CW. Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br J Obstet Gynaecol. 1995;102(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  222. Palei AC, Granger JP, Tanus-Santos JE. Matrix metalloproteinases as drug targets in preeclampsia. Curr Drug Targets. 2013;14(3):325–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Prieto P, Cuenca J, Traves PG, Fernandez-Velasco M, Martin-Sanz P, Bosca L. Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ. 2010;17(7):1179–88.

    Article  CAS  PubMed  Google Scholar 

  224. El Kebir D, Jozsef L, Pan W, Wang L, Petasis NA, Serhan CN, et al. 15-epi-lipoxin A4 inhibits myeloperoxidase signaling and enhances resolution of acute lung injury. Am J Respir Crit Care Med. 2009;180(4):311–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Sunderland N, Hennessy A, Makris A. Animal models of pre-eclampsia. Am J Reprod Immunol. 2011;65(6):533–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lirlândia Pires Sousa.

Ethics declarations

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG; APQ-03318-15), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Research Fellowship), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Ph.D. scholarship).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perucci, L.O., Corrêa, M.D., Dusse, L.M. et al. Resolution of inflammation pathways in preeclampsia—a narrative review. Immunol Res 65, 774–789 (2017). https://doi.org/10.1007/s12026-017-8921-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-017-8921-3

Keywords

Navigation