Skip to main content
Log in

The role of Bcl-2 family members in the progression of cutaneous melanoma

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The overwhelming problem of cutaneous melanoma is chemoresistance. Subversion of the biochemical changes that lead to chemoresistance intersects the apoptosis pathways. The mitochondrion has been a focal point of this intersection for the development of therapeutic strategies aimed at reducing the progression of melanoma. The Bcl-2 family of apoptotic regulators is arguably the most pivotal component to this mitochondrial response. The shear number of studies conducted on the relationship between melanoma and Bcl-2 members prompted us to evaluate the literature available and discern some rational utility of the data. We have found that there are striking inconsistencies for the expression of Bcl-2 family proteins with melanoma progression, particularly for Bcl-2. Roughly one-third of the data suggests an increase in Bcl-2 expression with advancing melanoma, while another third suggests a decrease. Furthermore, the remaining third found on the whole, a detectable level of Bcl-2 in all tissues of melanocytic origin. These discrepancies are difficult to rectify in light of the apparent success of recent clinical trials utilizing Bcl-2 antisense strategies. The general consensus in the literature is that pro-apoptotic Bax is decreased with melanoma progression while anti-apoptotic Bcl-xL and Mcl-1 appear to increase with progression. We suggest that the biochemical techniques being used for analysis present too great of a heterogeneity, which could be mitigated with more standard procedures and reagents. Finally the utility of ‘multi-specific’ antisense tactics could be a more effective way of targeting advanced melanoma disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dummer R, Nestle FO, Burg G. Report on the Eighth World Congress on Cancers of the Skin 18-21 July 2001, Zurich, Switzerland. Melanoma Res 2001; 11: 549–50.

    Article  PubMed  CAS  Google Scholar 

  2. Woll E, Bedikian A, Legha SS. Uveal melanoma: natural history and treatment options for metastatic disease. Melanoma Res 1999; 9: 575–81.

    PubMed  CAS  Google Scholar 

  3. Howe HL, Wingo PA, Thun MJ et al. Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst 2001; 93: 824–42.

    Article  PubMed  CAS  Google Scholar 

  4. de Gruijl FR. Skin cancer and solar UV radiation. Eur J Cancer 1999; 35: 2003–9.

    Article  PubMed  CAS  Google Scholar 

  5. Scott GA, Haake AR. Keratinocytes regulate melanocyte number in human fetal and neonatal skin equivalents. J Invest Dermatol 1991; 97: 776–81.

    Article  PubMed  CAS  Google Scholar 

  6. Vancoillie G, Lambert J, Nayaert JM. Melanocyte biology and its implications for the clinician. Eur J Dermatol 1999; 9: 241–51.

    PubMed  CAS  Google Scholar 

  7. Marks R. Epidemiology of melanoma. Clin Exp Dermatol 2000; 25: 459–63.

    Article  PubMed  CAS  Google Scholar 

  8. Pollock PM, Trent JM. The genetics of cutaneous melanoma. Clin Lab Med 2000; 20: 667–90.

    PubMed  CAS  Google Scholar 

  9. Whiteman DC, Whiteman CA, Green AC. Childhood sun exposure as a risk factor for melanoma: a systematic review of epidemiologic studies. Cancer Causes Control 2001; 12: 69–82.

    Article  PubMed  CAS  Google Scholar 

  10. Kim CJ, Reintgen DS, Balch CM. The new melanoma staging system. Cancer Control 2002; 9: 9–15.

    Google Scholar 

  11. Cohen GL, Falkson CI. Current treatment options for malignant melanoma. Drugs 1998; 55: 791–9.

    Article  PubMed  CAS  Google Scholar 

  12. Olhoffer IH, Bolognia JL. What's new in the treatment of cutaneous melanoma? Semin Cutan Med Surg 1998; 17: 96–107.

    CAS  Google Scholar 

  13. Jenrette JM. Malignant melanoma: the role of radiation therapy revisited. Semin Oncol 1996; 23: 759–62.

    PubMed  CAS  Google Scholar 

  14. Wajant H. The Fas signaling pathway: more than a paradigm. Science 2002; 296: 1635–6.

    Article  PubMed  CAS  Google Scholar 

  15. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998; 281: 1305–8.

    CAS  Google Scholar 

  16. Tsujimoto Y. Bcl-2 family of proteins: Life-or-death switch in mitochondria. Biosci Rep 2002; 22: 47–58.

    CAS  Google Scholar 

  17. van den Oord JJ, Vandeghinste N, De Ley M et al. Bcl-2 expression in human melanocytes and melanocytic tumors. Am J Pathol 1994; 145: 294–300.

    PubMed  CAS  Google Scholar 

  18. Sato T, Hanada M, Bodrug S et al. Interactions among members of the Bcl-2 protein family analyzed with a yeast two-hybrid system. Proc Natl Acad Sci USA 1994; 91: 9238–42.

    Article  PubMed  CAS  Google Scholar 

  19. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science 1998; 281: 1322–6.

    CAS  Google Scholar 

  20. Martinou JC, Green DR. Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2001; 2: 63–7.

    Article  PubMed  CAS  Google Scholar 

  21. Zimmermann KC, Bonzon C, Green DR. The machinery of programmed cell death. Pharmacol Ther 2001; 92: 57–70.

    Article  PubMed  CAS  Google Scholar 

  22. Clark WH Jr, From L, Bernardino EA et al. The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 1969; 29: 705–27.

    Google Scholar 

  23. Breslow A. Thickness, cross-sectional areas and depth of invasion in the prognosis of cutaneous melanoma. Ann Surg 1970; 172: 902–8.

    PubMed  CAS  Google Scholar 

  24. Reed JA, Albino AP. Update of diagnostic and prognostic markers in cutaneous malignant melanoma. Dermatol Clin 1999; 17: 631–43.

    Article  PubMed  CAS  Google Scholar 

  25. Hernberg M, Turunen JP, von Boguslawsky K et al. Prognostic value of biomarkers in malignant melanoma. Melanoma Res 1998; 8: 283–91.

    PubMed  CAS  Google Scholar 

  26. Leiter U, Schmid RM, Kaskel P et al. Antiapoptotic bcl-2 and bclxL in advanced malignant melanoma. Arch Dermatol Res 2000; 292: 225–32.

    Article  PubMed  CAS  Google Scholar 

  27. Sviatoha V, Rundgren A, Tani E et al. Expression of CD40, CD44, bcl-2 antigens and rate of cell proliferation on fine needle aspirates from metastatic melanoma. Cytopathology 2002; 13: 11–21.

    Article  PubMed  CAS  Google Scholar 

  28. Utikal J, Leiter U, Udart M et al. Expression of c-myc and bcl-2 in primary and advanced cutaneous melanoma. Cancer Invest 2002; 20: 914–21.

    Article  PubMed  CAS  Google Scholar 

  29. Saenz-Santamaria MC, Reed JA, McNutt NS et al. Immunohistochemical expression of BCL-2 in melanomas and intradermal nevi. J Cutan Pathol 1994; 21: 393–7.

    Article  PubMed  CAS  Google Scholar 

  30. Ramsay JA, From L, Kahn HJ. Bcl-2 protein expression in melanocytic neoplasms of the skin. Mod Pathol 1995; 8: 150–4.

    PubMed  CAS  Google Scholar 

  31. Tron VA, Krajewski S, Klein-Parker H et al. Immunohistochemical analysis of Bcl-2 protein regulation in cutaneous melanoma. Am J Pathol 1995; 146: 643–50.

    PubMed  CAS  Google Scholar 

  32. Tang L, Tron VA, Reed JC et al. Expression of apoptosis regulators in cutaneous malignant melanoma. Clin Cancer Res 1998; 4: 1865–71.

    PubMed  CAS  Google Scholar 

  33. Cerroni L, Soyer HP, Kerl H. Bcl-2 protein expression in cutaneous malignant melanoma and benign melanocytic nevi. Am J Dermatopathol 1995; 17: 7–11.

    PubMed  CAS  Google Scholar 

  34. Plettenberg A, Ballaun C, Pammer J et al. Human melanocytes and melanoma cells constitutively express the Bcl-2 proto-oncogene in situ and in cell culture. Am J Pathol 1995; 146: 651–9.

    PubMed  CAS  Google Scholar 

  35. Selzer E, Schlagbauer-Wadl H, Okamoto I et al. Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines. Melanoma Res 1998; 8: 197–203.

    PubMed  CAS  Google Scholar 

  36. Collins KA, White WL. Intercellular adhesion molecule 1 (ICAM-1) and bcl-2 are differentially expressed in early evolving malignant melanoma. Am J Dermatopathol 1995; 17: 429–38.

    PubMed  CAS  Google Scholar 

  37. Kanter-Lewensohn L, Hedblad MA,Wejde J et al. Immunohistochemical markers for distinguishing Spitz nevi from malignant melanomas. Mod Pathol 1997; 10: 917–20.

    PubMed  CAS  Google Scholar 

  38. Grover R, Wilson GD. Bcl-2 expression in malignant melanoma and its prognostic significance. Eur J Surg Oncol 1996; 22: 347–9.

    Article  PubMed  CAS  Google Scholar 

  39. Yang P, Becker D. Telomerase activity and expression of apoptosis and anti-apoptosis regulators in the progression pathway of human melanoma. Int J Oncol 2000; 17: 913–9.

    PubMed  CAS  Google Scholar 

  40. Xie K, Wang Y, Huang S et al. Nitric oxide-mediated apoptosis of K-1735 melanoma cells is associated with downregulation of Bcl-2. Oncogene 1997; 15: 771–9.

    CAS  Google Scholar 

  41. Raisova M, Hossini AM, Eberle J et al. The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fasmediated apoptosis. J Invest Dermatol 2001; 117: 333–40.

    Article  PubMed  CAS  Google Scholar 

  42. Nguyen T, Zhang XD, Hersey P. Relative resistance of fresh isolates of melanoma to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Clin Cancer Res 2001; 7: 966s–973s.

    PubMed  CAS  Google Scholar 

  43. Zhang H, Rosdahl I. Expression of oncogenes, tumor suppressor, mismatch repair and apoptosis-related genes in primary and metastatic melanoma cells. Int J Oncol 2001; 19: 1149–53.

    PubMed  CAS  Google Scholar 

  44. Morales-Ducret CR, van de Rijn M, LeBrun DP et al. Bcl-2 expression in primary malignancies of the skin. Arch Dermatol 1995; 131: 909–12.

    Article  PubMed  CAS  Google Scholar 

  45. Morales-Ducret CR, van de Rijn M, Smoller BR. Bcl-2 expression in melanocytic nevi. Insights into the biology of dermal maturation. Arch Dermatol 1995; 131: 915–8.

    CAS  Google Scholar 

  46. Miracco C, Santopietro R, Biagioli M et al. Different patterns of cell proliferation and death and oncogene expression in cutaneous malignant melanoma. J Cutan Pathol 1998; 25: 244–51.

    PubMed  CAS  Google Scholar 

  47. Grossman D, McNiff JM, Li F et al. Expression and targeting of the apoptosis inhibitor, survivin, in human melanoma. J Invest Dermatol 1999; 113: 1076–81.

    Google Scholar 

  48. Loggini B, Rinaldi I, Pingitore R et al. Immunohistochemical study of 49 cutaneous melanomas: p53, PCNA, Bcl-2 expression and multidrug resistance. Tumori 2001; 87: 179–86.

    PubMed  CAS  Google Scholar 

  49. Gradilone A, Gazzaniga P, Ribuffo D et al. Survivin, bcl-2, bax, and bcl-X gene expression in sentinel lymph nodes from melanoma patients. J Clin Oncol 2003; 21: 306–12.

    Article  PubMed  CAS  Google Scholar 

  50. Jansen B, Schlagbauer-Wadl H, Brown BD et al. Bcl-2 antisense therapy chemosensitizes human melanoma in SCID mice. Nat Med 1998; 4: 232–4.

    Article  PubMed  CAS  Google Scholar 

  51. Borner C, Schlagbauer Wadl H, Fellay I et al. Mutated N-ras upregulates Bcl-2 in human melanoma in vitro and in SCID mice. Melanoma Res 1999; 9: 347–50.

    Article  PubMed  CAS  Google Scholar 

  52. Jansen B, Wacheck V, Heere-Ress E et al. Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 2000; 356: 1728–33.

    Article  PubMed  CAS  Google Scholar 

  53. Wacheck V, Krepler C, Strommer S et al. Antitumor effect of G3139 Bcl-2 antisense oligonucleotide is independent of its immune stimulation by CpG motifs in SCID mice. Antisense Nucleic Acid Drug Dev 2002; 12: 359–67.

    Article  PubMed  CAS  Google Scholar 

  54. Citro G, D'Agnano I, Leonetti C et al. C-myc antisense oligodeoxynucleotides enhance the efficacy of cisplatin in melanoma chemotherapy in vitro and in nude mice. Cancer Res 1998; 58: 283–9.

    PubMed  CAS  Google Scholar 

  55. Petitclerc E, Stromblad S, von Schalscha TL et al. Integrin alpha( v)beta3 promotes M21 melanoma growth in human skin by regulating tumor cell survival. Cancer Res 1999; 59: 2724–30.

    PubMed  CAS  Google Scholar 

  56. Takaoka A, Adachi M, Okuda H et al. Anti-cell death activity promotes pulmonary metastasis of melanoma cells. Oncogene 1997; 14: 2971–7.

    Article  PubMed  CAS  Google Scholar 

  57. Brown DC, Gatter KC. Ki67 protein: The immaculate deception? Histopathology 2002; 40: 2–11.

    Article  PubMed  CAS  Google Scholar 

  58. Korabiowska M, Brinck U, Ruschenburg I et al. Bcl2 and Bax expression in naevi and melanomas and their relation to ploidy status and proliferation. Pol J Pathol 1999; 50: 17–21.

    PubMed  CAS  Google Scholar 

  59. Radhi JM. Malignant melanoma arising from nevi, p53, p16, and Bcl-2: Expression in benign versus malignant components. J Cutan Med Surg 1999; 3: 293–7.

    PubMed  CAS  Google Scholar 

  60. Olie RA, Hafner C, Kuttel R et al. Bcl-2 and bcl-xL antisense oligonucleotides induce apoptosis in melanoma cells of different clinical stages. J Invest Dermatol 2002; 118: 505–12.

    Article  PubMed  CAS  Google Scholar 

  61. Vlaykova T, Talve L, Hahka-Kemppinen M et al. Immunohistochemically detectable bcl-2 expression in metastatic melanoma: Association with survival and treatment response. Oncology 2002; 62: 259–68.

    Article  PubMed  CAS  Google Scholar 

  62. Gautschi O, Tschopp S, Olie RA et al. Activity of a novel bcl-2/bclxL-bispecific antisense oligonucleotide against tumors of diverse histologic origins. J Natl Cancer Inst 2001; 93: 463–71.

    Article  PubMed  CAS  Google Scholar 

  63. Klasa RJ, Gillum AM, Klem RE et al. Oblimersen Bcl-2 antisense: Facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev 2002; 12: 193–213.

    Article  PubMed  CAS  Google Scholar 

  64. Esche C, Shurin GV, Kirkwood JM et al. Tumor necrosis factoralpha-promoted expression of Bcl-2 and inhibition of mitochondrial cytochrome c release mediate resistance of mature dendritic cells to melanoma-induced apoptosis. Clin Cancer Res 2001; 7: 974s–979s.

    PubMed  CAS  Google Scholar 

  65. Iervolino A, Trisciuoglio D, Ribatti D et al. Bcl-2 overexpression in human melanoma cells increases angiogenesis through VEGF mRNA stabilization and HIF-1-mediated transcriptional activity. FASEB J 2002; 16: 1453–5.

    Google Scholar 

  66. Zhang X, Xu Q, Saiki I. Quercetin inhibits the invasion and mobility of murine melanoma B16-BL6 cells through inducing apoptosis via decreasing Bcl-2 expression. Clin Exp Metastasis 2000; 18: 415–21.

    Article  PubMed  CAS  Google Scholar 

  67. Strasberg Rieber M, Zangemeister-Wittke U, Rieber M. p53-Independent induction of apoptosis in human melanoma cells by a bcl-2/bcl-xL bispecific antisense oligonucleotide. Clin Cancer Res 2001; 7: 1446–51.

    PubMed  CAS  Google Scholar 

  68. Hu Q, Bally MB, Madden TD. Subcellular trafficking of antisense oligonucleotides and down-regulation of bcl-2 gene expression in human melanoma cells using a fusogenic liposome delivery system. Nucleic Acids Res 2002; 30: 3632–41.

    Article  PubMed  CAS  Google Scholar 

  69. Riebeling C, Forsea AM, Raisova M et al. The bisphosphonate pamidronate induces apoptosis in human melanoma cells in vitro. Br J Cancer 2002; 87: 366–71.

    Article  PubMed  CAS  Google Scholar 

  70. Yamamura K, Kamada S, Ito S et al. Accelerated disappearance of melanocytes in bcl-2-deficient mice. Cancer Res 1996; 56: 3546–50.

    PubMed  CAS  Google Scholar 

  71. McGill GG, Horstmann M, Widlund HR et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 2002; 109: 707–18.

    Article  PubMed  CAS  Google Scholar 

  72. Boise LH, Gonzalez-Garcia M, Postema CE et al. Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993; 74: 597–608.

    Article  PubMed  CAS  Google Scholar 

  73. Heere-Ress E, Thallinger C, Lucas T et al. Bcl-X(L) is a chemoresistance factor in human melanoma cells that can be inhibited by antisense therapy. Int J Cancer 2002; 99: 29–34.

    Article  PubMed  CAS  Google Scholar 

  74. Niu G, Bowman T, Huang M et al. Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 2002; 21: 7001–10.

    Article  PubMed  CAS  Google Scholar 

  75. Gu J, Zhang L, Huang X et al. A novel single tetracycline-regulative adenoviral vector for tumor-specific Bax gene expression and cell killing in vitro and in vivo. Oncogene 2002; 21: 4757–64.

    Article  PubMed  CAS  Google Scholar 

  76. Honda T, Kagawa S, Spurgers KB et al. A recombinant adenovirus expressing wild-type Bax induces apoptosis in prostate cancer cells independently of their Bcl-2 status and androgen sensitivity. Cancer Biol Ther 2002; 1: 163–7.

    PubMed  CAS  Google Scholar 

  77. Raffo AJ, Kim AL, Fine RL. Formation of nuclear Bax/p53 complexes is associated with chemotherapy induced apoptosis. Oncogene 2000; 19: 6216–28.

    Article  PubMed  CAS  Google Scholar 

  78. Del Bello B, Valentini MA, Zunino F et al. Cleavage of Bcl-2 in oxidant-and cisplatin-induced apoptosis of human melanoma cells. Oncogene 2001; 20: 4591–5.

    CAS  Google Scholar 

  79. Lebedeva IV, Su ZZ, Chang Y et al. The cancer growth suppressing gene mda-7 induces apoptosis selectively in human melanoma cells. Oncogene 2002; 21: 708–18.

    Article  PubMed  CAS  Google Scholar 

  80. Mandic A, Viktorsson K, Molin M et al. Cisplatin induces the proapoptotic conformation of Bak in a deltaMEKK1-dependent manner. Mol Cell Biol 2001; 21: 3684–91.

    Article  PubMed  CAS  Google Scholar 

  81. Smalley KS, Eisen TG. Farnesyl thiosalicylic acid inhibits the growth of melanoma cells through a combination of cytostatic and proapoptotic effects. Int J Cancer 2002; 98: 514–22.

    Article  PubMed  CAS  Google Scholar 

  82. Jean D, Harbison M, McConkey DJ et al. CREB and its associated proteins act as survival factors for human melanoma cells. J Biol Chem 1998; 273: 24884–90.

    Article  PubMed  CAS  Google Scholar 

  83. Finnegan NM, Curtin JF, Prevost G et al. Induction of apoptosis in prostate carcinoma cells by BH3 peptides which inhibit Bak/Bcl-2 interactions. Br J Cancer 2001; 85: 115–21.

    Article  PubMed  CAS  Google Scholar 

  84. Shangary S, Johnson DE. Peptides derived from BH3 domains of Bcl-2 family members: A comparative analysis of inhibition of Bcl-2, Bclx( L) and Bax oligomerization, induction of cytochrome c release, and activation of cell death. Biochemistry 2002; 41: 9485–95.

    Article  PubMed  CAS  Google Scholar 

  85. Fulda S, Wick W, Weller M et al. Smac agonists sensitize for Apo2L/TRAIL-or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 2002; 8: 808–15.

    PubMed  CAS  Google Scholar 

  86. Harbour JW, Worley L, Ma D et al. Transducible peptide therapy for uveal melanoma and retinoblastoma. Arch Ophthalmol 2002; 120: 1341–6.

    PubMed  CAS  Google Scholar 

  87. Pirocanac EC, Nassirpour R, Yang M et al. Bax-induction gene therapy of pancreatic cancer. J Surg Res 2002; 106: 346–51.

    Article  PubMed  CAS  Google Scholar 

  88. Hsu FD, Nielsen TO, Alkushi A et al. Tissue microarrays are an effective quality assurance tool for diagnostic immunohistochemistry. Mod Pathol 2002; 15: 1374–80.

    Article  PubMed  Google Scholar 

  89. Kielhorn E, Provost E, Olsen D et al. Tissue microarray-based analysis shows phospho-beta-catenin expression in malignant melanoma is associated with poor outcome. Int J Cancer 2003; 103: 652–6.

    Article  PubMed  CAS  Google Scholar 

  90. Kannan K, Sharpless NE, Xu J et al. Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proc Natl Acad Sci USA 2003; 100: 1221–5.

    Article  PubMed  CAS  Google Scholar 

  91. Zangemeister-Wittke U, Leech SH, Olie RA et al. A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently induces apoptosis in tumor cells. Clin Cancer Res 2000; 6: 2547–55.

    PubMed  CAS  Google Scholar 

  92. Jiang Z, Zheng X, Rich KM. Down-regulation of Bcl-2 and Bcl-xL expression with bispecific antisense treatment in glioblastoma cell lines induce cell death. J Neurochem 2003; 84: 273–81.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bush, J.A., Li, G. The role of Bcl-2 family members in the progression of cutaneous melanoma. Clin Exp Metastasis 20, 531–539 (2003). https://doi.org/10.1023/A:1025874502181

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025874502181

Navigation