Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Acquired resistance to TKIs in solid tumours: learning from lung cancer

Key Points

  • Oncogene-addicted subtypes of non-small-cell lung cancer (NSCLC), with dramatic responses to tyrosine kinase inhibitors (TKIs) are well recognized, with EGFR mutant and ALK rearrengement being two prominent examples

  • Acquired resistance after initial clinical benefit inevitably occurs, usually within 1–2 years of starting therapy

  • Acquired resistance can occur through failure of drug delivery to the target, as in isolated central nervous system (CNS) progression, or by selection of biological variants during TKI exposure

  • Treatment approaches to acquired resistance include use of local ablative therapies to sites of progression and continuation of TKIs, cytotoxic chemotherapy or, if available, change in relevant targeted therapy

  • Clinical trials of acquired resistance in the future may have to consider the importance of the CNS as a sanctuary site

  • Trials of acquired resistance should consider the re-emergence of disease sensitive to the original TKI if there is an intervening period when the TKI-specific resistance selection pressure is relaxed

Abstract

The use of advanced molecular profiling to direct the use of targeted therapy, such as tyrosine kinase inhibitors (TKIs) for patients with advanced-stage non-small-cell lung cancer (NSCLC), has revolutionized the treatment of this disease. However, acquired resistance, defined as progression after initial benefit, to targeted therapies inevitably occurs. This Review explores breakthroughs in the understanding and treatment of acquired resistance in NSCLC, focusing on EGFR mutant and ALK rearrangement-positive disease, which may be relevant across multiple different solid malignancies with oncogene-addicted subtypes. Mechanisms of acquired resistance may be pharmacological (that is, failure of delivery of the drug to its target) or biological, resulting from evolutionary selection on molecularly diverse tumours. A number of clinical approaches can maintain control of the disease in the acquired resistance setting, including the use of radiation to treat isolated areas of progression and adding or switching to cytotoxic chemotherapy. Furthermore, novel approaches that have already proven successful include the development of second-generation and third-generation inhibitors and the combination of some of these inhibitors with antibodies directed against the same target. With our increased understanding of the spectrum of acquired resistance, major changes in how we conduct clinical research in this setting are now underway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of acquired resistance to TKIs in oncogene-addicted cancers.
Figure 2: Mechanisms of biological acquired resistance.
Figure 3: Clinical approaches for patients with acquired resistance.

Similar content being viewed by others

References

  1. Li, C. et al. Spectrum of oncogenic driver mutations in lung adenocarcinomas from East Asian never smokers. PLoS ONE 6, e28204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    CAS  PubMed  Google Scholar 

  3. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    CAS  PubMed  Google Scholar 

  4. Sequist, L. V. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013).

    CAS  PubMed  Google Scholar 

  5. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Camidge, D. R. et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 13, 1011–1019 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaw, A. T. et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 368, 2385–2394 (2013).

    CAS  PubMed  Google Scholar 

  8. Bergethon, K. et al. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol. 30, 863–870 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ou, S. H. et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J. Thorac. Oncol. 6, 942–946 (2011).

    PubMed  Google Scholar 

  10. Gautschi, O. et al. A patient with BRAF V600E lung adenocarcinoma responding to vemurafenib. J. Thorac. Oncol. 7, e23–e24 (2012).

    PubMed  Google Scholar 

  11. Mazieres, J. et al. Lung cancer that harbours a HER2 mutation: epidemiologic characteristics and therapeutic perspectives. J. Clin. Oncol. 31, 1997–2003 (2013).

    CAS  PubMed  Google Scholar 

  12. Drilon, A. et al. Response to cabozantinib in patients with RET fusion-positive lung adenocarcinomas. Cancer Discov. 3, 630–635 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jackman, D. et al. Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J. Clin. Oncol. 28, 357–360 (2010).

    CAS  PubMed  Google Scholar 

  14. Yu, H. A. et al. Poor response to erlotinib in patients with tumours containing baseline EGFR T790M mutations found by routine clinical molecular testing. Ann. Oncol. 25, 423–428 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gong, Y. et al. Induction of BIM is essential for apoptosis triggered by EGFR kinase inhibitors in mutant EGFR-dependent lung adenocarcinomas. PLoS Med. 4, e294 (2007).

    PubMed  PubMed Central  Google Scholar 

  16. Costa, D. B. et al. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 4, 1669–1679 (2007).

    CAS  PubMed  Google Scholar 

  17. Faber, A. C. et al. BIM expression in treatment-naive cancers predicts responsiveness to kinase inhibitors. Cancer Discov. 1, 352–365 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ng, K. P. et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat. Med. 18, 521–528 (2012).

    CAS  PubMed  Google Scholar 

  19. Rudin, C. M. et al. Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J. Clin. Oncol. 26, 1119–1127 (2008).

    CAS  PubMed  Google Scholar 

  20. Bowlin, S. J. et al. Twelve-month frequency of drug-metabolizing enzyme and transporter-based drug-drug interaction potential in patients receiving oral enzyme-targeted kinase inhibitor antineoplastic agents. Mayo Clin. Proc. 88, 139–148 (2013).

    CAS  PubMed  Google Scholar 

  21. Budha, N. R. et al. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy? Clin. Pharmacol. Ther. 92, 203–213 (2012).

    CAS  PubMed  Google Scholar 

  22. Hamilton, M. et al. Effects of smoking on the pharmacokinetics of erlotinib. Clin. Cancer Res. 12, 2166–2171 (2006).

    CAS  PubMed  Google Scholar 

  23. Yeo, W. L. et al. Erlotinib at a dose of 25 mg daily for non-small cell lung cancers with EGFR mutations. J. Thorac. Oncol. 5, 1048–1053 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Riely, G. J. et al. Prospective assessment of discontinuation and reinitiation of erlotinib or gefitinib in patients with acquired resistance to erlotinib or gefitinib followed by the addition of everolimus. Clin. Cancer Res. 13, 5150–5155 (2007).

    CAS  PubMed  Google Scholar 

  25. Browning, E. T., Weickhardt, A. J. & Camidge, D. R. Response to crizotinib rechallenge after initial progression and intervening chemotherapy in ALK lung cancer. J. Thorac. Oncol. 8, e21 (2013).

    PubMed  Google Scholar 

  26. Foo, J., Chmielecki, J., Pao, W. & Michor, F. Effects of pharmacokinetic processes and varied dosing schedules on the dynamics of acquired resistance to erlotinib in EGFR-mutant lung cancer. J. Thorac. Oncol. 7, 1583–1593 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lai, C. S., Boshoff, C., Falzon, M. & Lee, S. M. Complete response to erlotinib treatment in brain metastases from recurrent NSCLC. Thorax 61, 91 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Togashi, Y. et al. Cerebrospinal fluid concentration of gefitinib and erlotinib in patients with non-small cell lung cancer. Cancer Chemother. Pharmacol. 70, 399–405 (2012).

    CAS  PubMed  Google Scholar 

  29. Heon, S. et al. Development of central nervous system metastases in patients with advanced non-small cell lung cancer and somatic EGFR mutations treated with gefitinib or erlotinib. Clin. Cancer Res. 16, 5873–5882 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Grommes, C. et al. “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro Oncol. 13, 1364–1369 (2011).

    PubMed  PubMed Central  Google Scholar 

  31. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    PubMed  PubMed Central  Google Scholar 

  32. Shaw, A. T. et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004–1012 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Weickhardt, A. J. et al. Local ablative therapy of oligoprogressive disease prolongs disease control by tyrosine kinase inhibitors in oncogene-addicted non-small-cell lung cancer. J. Thorac. Oncol. 7, 1807–1814 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Costa, D. B. et al. CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J. Clin. Oncol. 29, e443–e445 (2011).

    PubMed  Google Scholar 

  35. Crinò, L. et al. Clinical experience with crizotinib in patients with advanced ALK-positive non-small cell Lung cancer and brain metastases. Presented at European Cancer Congress 2013 [online]

    Google Scholar 

  36. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    CAS  PubMed  Google Scholar 

  37. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    PubMed  PubMed Central  Google Scholar 

  38. Yun, C. H. et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl Acad. Sci. USA 105, 2070–2075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ercan, D. et al. Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene 29, 2346–2356 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Balak, M. N. et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin. Cancer Res. 12, 6494–6501 (2006).

    CAS  PubMed  Google Scholar 

  41. Costa, D. B., Schumer, S. T., Tenen, D. G. & Kobayashi, S. Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations. J. Clin. Oncol. 26, 1182–1184 (2008).

    PubMed  Google Scholar 

  42. Choi, Y. L. et al. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363, 1734–1739 (2010).

    CAS  PubMed  Google Scholar 

  43. Katayama, R. et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci. Transl. Med. 4, 120ra117 (2012).

    Google Scholar 

  44. Doebele, R. C. et al. Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin. Cancer Res. 18, 1472–1482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cortes, J. et al. Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood 110, 4005–4011 (2007).

    CAS  PubMed  Google Scholar 

  46. Engelman J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signalling. Science 316, 1039–1043 (2007).

    CAS  PubMed  Google Scholar 

  47. Bean, J. et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumours with acquired resistance to gefitinib or erlotinib. Proc. Natl Acad. Sci. USA 104, 20932–20937 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yano, S., Takeuchi, S., Nakagawa, T. & Yamada, T. Ligand-triggered resistance to molecular targeted drugs in lung cancer: roles of hepatocyte growth factor and epidermal growth factor receptor ligands. Cancer Sci. 103, 1189–1194 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ohashi, K. et al. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbour BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc. Natl Acad. Sci. USA 109, E2127–E2133 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Takezawa, K. et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation. Cancer Discov. 2, 922–933 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu, H. A. et al. Analysis of tumour specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. Cancer Res. 19, 2240–2247 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ware, K. E. et al. A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis 2, e39 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sasaki, T. et al. A novel ALK secondary mutation and EGFR signalling cause resistance to ALK kinase inhibitors. Cancer Res. 71, 6051–6060 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim, S. et al. Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer. J. Thorac. Oncol. 8, 415–422 (2013).

    CAS  PubMed  Google Scholar 

  55. Suda, K. et al. Epithelial to mesenchymal transition in an epidermal growth factor receptor-mutant lung cancer cell line with acquired resistance to erlotinib. J. Thorac. Oncol. 6, 1152–1161 (2011).

    PubMed  Google Scholar 

  56. Zhang, Z. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat. Genet. 44, 852–860 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ercan, D. et al. Reactivation of ERK signalling causes resistance to EGFR kinase inhibitors. Cancer Discov. 2, 934–947 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Jackman, D. M. et al. Response and resistance in a non-small-cell lung cancer patient with an epidermal growth factor receptor mutation and leptomeningeal metastases treated with high-dose gefitinib. J. Clin. Oncol. 24, 4517–4520 (2006).

    PubMed  Google Scholar 

  59. Bearz, A. et al. Activity of pemetrexed on brain metastases from non-small cell lung cancer. Lung Cancer 68, 264–268 (2010).

    PubMed  Google Scholar 

  60. Nagpal, S., Riess, J. & Wakelee, H. Treatment of leptomeningeal spread of NSCLC: a continuing challenge. Curr. Treat. Options Oncol. 13, 491–504 (2012).

    PubMed  Google Scholar 

  61. Shaw, A. T. et al. Results of a first-in-human phase I study of the ALK inhibitor LDK378 in advanced solid tumours [abstract]. Ann. Oncol. 23 (Suppl. 9), a440 (2012).

    Google Scholar 

  62. Camidge, D. R. et al. First-in-human dose-finding study of the ALK/EGFR inhibitor AP26113 in patients with advanced malignancies: updated results [abstract]. J. Clin. Oncol. 31 (Suppl.) a8031 (2013).

    Google Scholar 

  63. Chaft, J. E. et al. Disease flare after tyrosine kinase inhibitor discontinuation in patients with EGFR-mutant lung cancer and acquired resistance to erlotinib or gefitinib: implications for clinical trial design. Clin. Cancer Res. 17, 6298–6303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Chmielecki, J. et al. Optimization of dosing for EGFR-mutant non-small cell lung cancer with evolutionary cancer modeling. Sci. Transl. Med. 3, 90ra59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yu, H. A. et al. Local therapy with continued EGFR tyrosine kinase inhibitor therapy as a treatment strategy in EGFR-mutant advanced lung cancers that have developed acquired resistance to EGFR tyrosine kinase inhibitors. J. Thorac. Oncol. 8, 346–351 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Moran, T. & Sequist, L. V. Timing of epidermal growth factor receptor tyrosine kinase inhibitor therapy in patients with lung cancer with EGFR mutations. J. Clin. Oncol. 30, 3330–3336 (2012).

    CAS  PubMed  Google Scholar 

  67. Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kwak, E. L. et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl Acad. Sci. USA 102, 7665–7670 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Engelman, J. A. et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 67, 11924–11932 (2007).

    CAS  PubMed  Google Scholar 

  70. Sequist, L. V. et al. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 28, 3076–3083 (2010).

    CAS  PubMed  Google Scholar 

  71. Miller, V. A. et al. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncol. 13, 528–538 (2012).

    CAS  PubMed  Google Scholar 

  72. Janne, P. A. et al. Efficacy and safety of PF-00299804 (PF299) in patients (pt) with advanced NSCLC after failure of at least one prior chemotherapy regimen and prior treatment with erlotinib (E): a two-arm, phase II trial [abstract]. J. Clin. Oncol. 27 (Suppl.), a8063 (2009).

    Google Scholar 

  73. Godin-Heymann, N. et al. The T790M “gatekeeper” mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Mol. Cancer Ther. 7, 874–879 (2008).

    CAS  PubMed  Google Scholar 

  74. Camidge, D. R. et al. A phase Ib study of high-dose intermittent (HDI) afatinib in EGFR T790M mutation-positive non-small cell lung cancer patients with acquired resistance to reversible EGFR TKIs [abstract P2.11–011]. J. Thorac. Oncol. 8 (Suppl. 2), S893 (2013).

    Google Scholar 

  75. Zhou, W. et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 462, 1070–1074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sequist, L. V. et al. First-in-human evaluation of CO-1686, an irreversible, selective, and potent tyrosine kinase inhibitor of EGFR T790M [abstract]. J. Clin Oncol. 31 (Suppl.), a2524 (2013).

    Google Scholar 

  77. Ranson, M. et al. AZD9291: an irreversible inhibitor of epidermal growth factor receptor (EGFR) activating and resistance mutations in non-small cell lung cancer (NSCLC) [abstract P1.11–034]. J. Thorac. Oncol. 8 (Suppl. 2), S893 (2013).

    Google Scholar 

  78. Janjigian, Y. Y. et al. Activity of afatinib/cetuximab in patients with EGFR mutant non-small cell lung cancer and acquires resistance to EGFR inhibitors [abstract]. Ann. Oncol. 23 (Suppl. 9), a12270 (2012).

    Google Scholar 

  79. Camidge, D. R. Taking aim at ALK across the blood-brain barrier. J. Thorac. Oncol. 8, 389–390 (2013).

    PubMed  Google Scholar 

  80. Lin, N. U. et al. Challenges relating to solid tumour brain metastases in clinical trials, part 1: patient population, response, and progression. A report from the RANO group. Lancet Oncol. 14, e396–406 (2013).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this article, including discussion of content, writing, and editing the manuscript before submission and after peer review.

Corresponding author

Correspondence to D. Ross Camidge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camidge, D., Pao, W. & Sequist, L. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol 11, 473–481 (2014). https://doi.org/10.1038/nrclinonc.2014.104

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2014.104

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer