Skip to main content
Log in

Drug Interactions of Clinical Significance with Selective Serotonin Reuptake Inhibitors

  • Review Articles
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

The selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) have internationally become the accepted ‘benchmark’ class of antidepressants. It has become clear, however, that there are a number of clinically significant interactions between SSRIs and other medications. The most frequently described interactions are pharmacokinetic, which are far more prevalent than pharmacodynamic interactions.

This article details those medications that may interact significantly with the SSRIs, and provides clinical guidelines for minimising the likelihood of such complications.

The most common pharmacokinetic interactions are caused by an inhibitory effect of the SSRIs on the hepatic cytochrome P450 (CYP) metabolic system. The SSRIs differ in their potency in inhibiting a number of important CYP isoenzymes (CYP1A2, CYP2C9/10, CYP2C19, CYP2D6 and CYP3A3/4).

The major outcome of concern in relation to pharmacodynamic interactions is the development of the ‘serotonin syndrome’. While combination of the SSRIs with the irreversible monoamine oxidase inhibitors is the most recognised cause of this syndrome, concurrent administration with moclobemide, tryptophan or selegiline (deprenyl) may also lead to a similar outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nemeroff CB, De Vane CL, Pollock BG, et al. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry 1996; 153:311–20

    PubMed  CAS  Google Scholar 

  2. Brøsen K. Are pharmacokinetic drug interactions with the SSRIs an issue? Int Clin Psychopharmacol 1996; 11: 23–7

    PubMed  Google Scholar 

  3. Shader RI, von Moltke LL, Schmider J, et al. The clinician and drug interactions — an update. J Clin Psychopharmacol 1996; 16: 197–201

    PubMed  CAS  Google Scholar 

  4. Lane R, Baldwin D. Selective serotonin reuptake inhibitor serotonin syndrome: review. J Clin Psychopharmacol 1997; 27: 208–21

    Google Scholar 

  5. Rosenbaum JF. Managing selective serotonin reuptake inhibitor-drug interactions in clinical practice. Clin Pharmacokinet 1995; 29: 53–9

    PubMed  CAS  Google Scholar 

  6. Omura T, Sto R, Cooper DY, et al. Function of cytochrome P450 of microsomes. Fed Proc Federal Am Soc Exp Biol 1965; 24: 1181–9

    CAS  Google Scholar 

  7. Nelson DR, Keymans L, Kamataki T. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 1996; 6: 1–42

    PubMed  CAS  Google Scholar 

  8. Nebert DW, Adesnick M, Coon MJ, et al. The P450 gene superfamily: recommended nomenclature. DNA 1987; 6: 1–11

    PubMed  CAS  Google Scholar 

  9. Nelson DR, Kamataki T, Waxman DJ, et al. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes and nomenclature. DNA Cell Biol 1993; 12: 1–51

    PubMed  CAS  Google Scholar 

  10. Brafsen K, Hansen JG, Neilsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55

    Google Scholar 

  11. Skjelbo E, Brösen K, Hallas J, et al. The mephenyton oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 1991; 49: 18–23

    PubMed  CAS  Google Scholar 

  12. Brøsen K, Hansen MJG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Ther Drug Monit 1993; 15: 173–4

    Google Scholar 

  13. Brøsen K. Drug interactions and the cytochrome P450 system: the role of cytochrome P4501A2. Clin Pharmacokinet 1995; 29: 20–5

    PubMed  Google Scholar 

  14. Sesardic D, Boobis AR, Edwards RJ. A form of cytochrome P450 in man, orthologous to form d in the rat catalyses the o-demethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol 1988; 26: 363–72

    PubMed  CAS  Google Scholar 

  15. Lemoine A, Gautier JC, Azoulay D, et al. Major pathway of imipramine metabolism is catalyzed by cytochromes P-450 1A2 and P-450 3A4 in human liver. Mol Pharmacol 1993; 43: 827–32

    PubMed  CAS  Google Scholar 

  16. Goldstein JA, de Morais SMF. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4: 285–99

    PubMed  CAS  Google Scholar 

  17. de Morias SMF, Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994; 269: 15419–22

    Google Scholar 

  18. Goldstein JA, de Morais SMF. Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 1994; 4: 285–99

    PubMed  CAS  Google Scholar 

  19. Bertilsson L, Henthorn TK, Sanz E, et al. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquine, hydroxylation phenotype. Clin Pharmacol Ther 1989; 45: 348–355

    PubMed  CAS  Google Scholar 

  20. Schmid B, Bircher J, Preisig R. Polymorphic dextromethorphan metabolism: cosegregation of oxidative O-demethylation with debrisoquin hydroxylation. Clin Pharmacol Ther 1985; 38:618–24

    PubMed  CAS  Google Scholar 

  21. Gonzalez FJ, Meyer UA. Molecular genetics of the debrisoquinspartein polymorphism. Clin Pharmacol Ther 1991; 50: 233–8

    PubMed  CAS  Google Scholar 

  22. Riesenman C. Antidepressant drug interactions and the cytochrome P450 system: a critical appraisal. Pharmacotherapy 1995; 15: 84S–99S

    PubMed  CAS  Google Scholar 

  23. Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 1994; 270: 414–23

    PubMed  CAS  Google Scholar 

  24. Gonzalez FJ. Human cytochromes P450: problems and prospects, trends Pharmacol Sci 1992; 13: 346–52

    PubMed  CAS  Google Scholar 

  25. von Moltke LL, Greenblatt DJ, Schmider J, et al. Metabolism of drugs by cytochrome P4503A isoforms: implications for drug interactions in psychopharmacology. Clin Pharmacokinet 1995; 29: 33–44

    Google Scholar 

  26. Schou M, Grogan J, Mancewicz JA, et al. Activation of CYP3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 1994; 33: 6450–5

    Google Scholar 

  27. Kolars JC, Lown KS, Schniedlin-Ren P, et al. CYP3A gene expression in human gut epithelium. Pharmacogenetics 1994; 4: 247–59

    PubMed  CAS  Google Scholar 

  28. Jeppesen U, Gram LF, Vistisen K, et al. Dose dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996; 51: 73–8

    PubMed  CAS  Google Scholar 

  29. Fredericson OK, Toft B, Christophersen L, et al. Kinetics of citalopram in elderly patients. Psychopharmacology 1985; 86: 253–57

    Google Scholar 

  30. Schenker S, Bergstrom RF, Wolen RL, et al. Fluoxetine disposition and elimination in cirrhosis. Clin Pharmacol Ther 1988; 44: 353–59

    PubMed  CAS  Google Scholar 

  31. Crewe HK, Lennard MS, Tucker GT, et al. The effect of selective serotonin re-uptake inhibitors on cytochrome P4502D6 (CYP2D6) activity in human liver microsomes. Br J Clin Pharmacol 1992; 34: 262–5

    PubMed  CAS  Google Scholar 

  32. von Moltke LL, Greenblatt DJ, Duan SX, et al. Inhibition of terfenadine metabolism in vitro by azole antifungal agents and by selective serotonin reuptake inhibitor antidepressants: relation to pharmacokinetic interactions in vivo. J Clin Psychopharmacol 1996; 16: 104–12

    Google Scholar 

  33. Brøsen K, Skjelbo E, Tasmussen BB, et al. Fluvoxamine is a potent inhibitor of cytochrome P4501A2. Biochem Pharmacol 1993; 45: 1211–4

    PubMed  Google Scholar 

  34. Jeppesen U, Loft S, Poulsen HE. A fluvoxamine-caffeine interaction study. Pharmacogenetics 1996; 6: 213–22

    PubMed  CAS  Google Scholar 

  35. Rasmussen BB, Maenpaa J, Pelkonen O. Selective serotonin reuptake inhibitors and theophylline metabolism in human liver microsomes: potent inhibition by fluvoxamine. Br J Clin Pharmacol 1995; 39: 151–9

    PubMed  CAS  Google Scholar 

  36. Benfield P, Ward A. Fluvoxamine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1986; 32: 313–34

    PubMed  CAS  Google Scholar 

  37. Shader RI, Greenblatt DJ, von Moltke LL. Fluoxetine inhibition of phenytoin metabolism. J Clin Psychopharmacol 1994; 14: 375–6

    PubMed  CAS  Google Scholar 

  38. Lemberger L, Bergstrom RF, Wolen RL, et al. Fluoxetine: clinical pharmacology and physiologic disposition. J Clin Psychiatry 1985; 46: 14–9

    PubMed  CAS  Google Scholar 

  39. Rowe H, Carmichael R, Lemberger L, et al. The effect of fluoxetine on warfarin metabolism in the rat and man. Life Sci 1978; 23: 807–12

    PubMed  CAS  Google Scholar 

  40. Levy RH. Cytochrome P450 isoenzymes and antiepileptic drug interactions. Epilepsia 1995: 36 Suppl.: S8–S13

    PubMed  Google Scholar 

  41. Vandel S, Bertschy G, Baumann P, et al. Fluvoxamine and fluoxetine-interaction studies with amitriptyline, clomipramine and neuroleptics in phenytoped patients. Pharmacol Res 1995:31:347–53

    PubMed  CAS  Google Scholar 

  42. Jeppesen U, Gram LF, Vistisen K, et al. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996:51:73–8

    PubMed  CAS  Google Scholar 

  43. Perucca E, Gatti G, Spina E, et al. Clinical pharmacokinetics of fluvoxamine. Clin Pharmacokinet 1994; 27: 176–90

    Google Scholar 

  44. Lemberger L, Rowe H, Bosomworth JC, et al. The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam. Clin Pharmacol Ther 1988; 43: 412–9

    PubMed  CAS  Google Scholar 

  45. Brøsen K, Gram LF, Kragh-Sorensen P. Extremely slow metabolism of amitriptyline but normal metabolism of imipramine and desipramine in an extensive metabolizer of sparteine, debrisoquine and mephenytoin. Ther Drug Monit 1991; 13: 177–82

    PubMed  Google Scholar 

  46. Harvey AT, Preskorn SH. Cytochrome P450 enzymes: interpretation of their interactions with selective serotonin reuptake inhibitors. Part II. J Clin Psychopharmacol 1996; 16: 345–55

    PubMed  CAS  Google Scholar 

  47. Skjelbo E, Brøsen K. Inhibitors of imipramine metabolism by human liver microsomes. Br J Clin Pharmacol 1992; 34:256–61

    PubMed  CAS  Google Scholar 

  48. Otton SV, Wu D, Joffe RT, et al. Inhibition by fluoxetine of cytochrome P450 2D6 activity. Clin Pharmacol Ther 1993; 53:401–9

    PubMed  CAS  Google Scholar 

  49. Otton SV, Ball SE, Cheung SW, et al. Comparative inhibition of the polymorphic enzyme CYP2D6 by venlafaxine and other 5HT uptake inhibitors [abstract]. Clin Pharmacol Ther 1994; 55: 141

    Google Scholar 

  50. Sproule BA, Otton SV, Cheung SW, et al. Does sertraline inhibit CYP2D6 after chronic dosing [abstract]? Clin Pharmacol Ther 1995; 57: 151

    Google Scholar 

  51. von Moltke LL, Greenblatt DJ, Harmatz JS, et al. In vitro inhibition of desipramine oxidation by fluoxetine and norfluoxetine is greater than inhibition by sertraline or desmethylsertraline. Clin Pharmacol Ther 1993; 198

  52. von Moltke LL, Greenblatt DJ, Cotreau-Bilbo MM, et al. Inhibition of desipramine hydroxylation in vitro by serotonin-reuptake-inhibitor antidepressants, and by quinidine and ketoconazole: a model system to predict drug interactions in vivo. J Pharmacol Exp Ther 1994; 268: 1278–83

    Google Scholar 

  53. von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol 1995; 15: 125–31

    Google Scholar 

  54. Gram LF, Hansen MGJ, Sindrup SH. Citalopram interaction studies with levomepromazine, imipramine, and lithium. Ther Drug Monit 1993,15: 18–24

    PubMed  CAS  Google Scholar 

  55. Jann MW, Carson SW, Grimsley SR, et al. Effects of sertraline upon imipramine pharmacodynamics [abstract]. Clin Pharmacol Ther 1995; 57: 207

    Google Scholar 

  56. Albers LJ, Reist C, Heolmeste D, et al. Paroxetine shifts imipramine metabolism. Psychiatry Res 1996, 59: 189–196

    PubMed  CAS  Google Scholar 

  57. Spina E, Pollicino AM, Avenoso A, et al. Fluvoxamine-induced alterations in plasma concentrations of imipramine and desipramine in depressed patients. Int J Clin Pharmacol 1993; 3: 167–71

    Google Scholar 

  58. Bergstrom RF, Peyton AL, Lemberger L, et al. Quantification and mechanism of the fluoxetine and tricyclic antidepressant interaction. Clin Pharmacol Ther 1992; 239–48

  59. Brøsen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55

    PubMed  Google Scholar 

  60. Preskorn SH, Alderman J, Chung M, et al. Pharmacokinetics of desipramine coadministered with sertraline or fluoxetine. J Clin Psychopharmacol 1994; 14: 90–7

    PubMed  CAS  Google Scholar 

  61. Kurtz DL, Bergstrom RF, Goldberg MJ, et al. Drug interaction between sertraline and desipramine or imipramine. J Clin Pharmacol 1994; 34: 1009–33

    Google Scholar 

  62. Zussman BD, Davie CC, Fowles SE, et al. Sertraline, like other SSRIs, is a significant inhibitor of desipramine metabolism in vivo. Br J Clin Pharmacol 1995; 39: 550–1

    Google Scholar 

  63. von Moltke LL, Greenblatt DJ, Cotreau-Bibbo M, et al. Inhibition of desipramine hydroxylation in vitro by serotonin-reuptake-inhibitor antidepressants, and by quinidine and ketoconazole: a model system to predict drug interactions in vivo. J Pharmacol Exp Ther 1994b; 268: 1278–83

    Google Scholar 

  64. von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Pharmacol 1995; 15: 125–31

    Google Scholar 

  65. Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52: 479–86

    PubMed  CAS  Google Scholar 

  66. Lasher TA, Fleishaker JC, Steenwyk RC, et al. Pharmacokinetic pharmacodynamic evaluation of the combined administration of alprazolam and fluoxetine. Psychopharmacology 1991; 104: 323–7

    PubMed  CAS  Google Scholar 

  67. Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Pharmacol 1994; 46: 35–9

    CAS  Google Scholar 

  68. Martin DE, Zussman B, Everitt DE, et al. No effect of paroxetine on the cardiac safety and pharmacokinetics of terfenadine [abstract]. J Clin Pharmacol 1996; 36: 849

    Google Scholar 

  69. Vaughan DA. Interaction of fluoxetine with tricyclic antidepressants [letter]. Am J Psychiatry 1988; 145: 1478

    PubMed  CAS  Google Scholar 

  70. Bertschy G, Vandel S, Vandel B, et al. Fluvoxamine-tricyclic antidepressant interaction: an accidental finding. Eur J Clin Pharmacol 1991; 40: 119–20

    PubMed  CAS  Google Scholar 

  71. Seifritz E, Holsboertracksten E, Hemmeter V, et al. Increased trimipramine plasma levels during fluvoxamine comedication. Eur J Neuropsychopharmacol 1994; 4: 15–20

    CAS  Google Scholar 

  72. Lydiard RB, Anton RF, Cunningham T, et al. Interactions between sertraline and tricyclic antidepressants. Am J Psychiatry 1993; 150: 1125–6

    PubMed  CAS  Google Scholar 

  73. Albers LJ, Reist C, Helmeste D, et al. Paroxetine shifts imipramine metabolism. Psychiatry Res 1996; 59: 189–96

    PubMed  CAS  Google Scholar 

  74. De Vane CL. Pharmacokinetics of the newer antidepressants: clinical relevance. Am J Med 1994; 97: 6–23

    Google Scholar 

  75. Preskorn SH, Beber JH, Faul JC, et al. Serious adverse effects of combining fluoxetine and tricyclic antidepressants [letter]. Am J Psychiatry 1990; 147:532

    PubMed  CAS  Google Scholar 

  76. Cavanaugh S. Drug-drug interactions of fluoxetine with tricyclics. Psychosomatics 1990; 31: 273–6

    Google Scholar 

  77. Kronbach T, Mathys D, Umeno M, et al. Oxidation of midazolam and triazolam by human liver cytochrome P450111A4. Mol Pharmacol 1989; 36: 89–96

    PubMed  CAS  Google Scholar 

  78. Schmider J, Greenblatt DJ, von Moltke LL, et al. Relationship of in vitro data on drug metabolism to in vivo pharmacokinetics and drug interactions: implications for diazepam disposition in humans. J Clin Psychopharmacol 1996; 16: 267–72

    PubMed  CAS  Google Scholar 

  79. Wright CE, Lasher-Sisson TA, Steenwyk RC, et al. A pharmacokinetic evaluation of the combined administration of triazolam and fluoxetine. Pharmacotherapy 1992; 12: 103–6

    PubMed  CAS  Google Scholar 

  80. Gardner MJ, Baris BA, Wilner KD, et al. Effect of sertraline on the pharmacokinetics and protein binding of diazepam on healthy volunteers. Clin Pharmacokinet 1997; 32 Suppl. 1: 43–9

    PubMed  CAS  Google Scholar 

  81. Levy RH. Cytochrome P450 isozymes and antiepileptic drug interactions. Epilepsia 1995; 36: S8–13

    PubMed  Google Scholar 

  82. Jalil P. Toxic reaction following the combined administration of fluoxetine and phenytoin: two case reports. J Neurol Neuro-surg Psychiatry 1992; 55: 412–3

    CAS  Google Scholar 

  83. Rapeport WG, Muirhead DC, Williams SA, et al. Absence of effect of sertraline on the pharmacokinetics and pharmacodynamics of phenytoin. J Clin Psychiatry 1996; 57 Suppl. 1: 24–8

    PubMed  CAS  Google Scholar 

  84. Grimsley SR, Jann MW, Carter JG, et al. Pharmacokinetics and drug disposition: increased carbamazepine plasma concentrations after fluoxetine coadministration. Clin Pharmacol Ther 1991; 50: 10–5

    PubMed  CAS  Google Scholar 

  85. Pearson HJ. Interaction of fluoxetine with carbamazepine [letter]. J Clin Psychiatry 1990; 51: 126

    PubMed  CAS  Google Scholar 

  86. Fritze J, Unsorg B, Lanczik M, et al. Interaction between carbamazepine and fluvoxamine. Acta Psychiatr Scand 1991; 84: 583–4

    PubMed  CAS  Google Scholar 

  87. Joblin M, Ghose K. Possible interaction of sertraline with carbamazepine [letter]. N Z Med J 1994; 107: 43

    PubMed  CAS  Google Scholar 

  88. Rapeport WG, Williams SA, Muirhead DC, et al. Absence of a sertraline-medicated effect on the pharmacokinetics and pharmacodynamics of carbamazepine. J Clin Psychiatry 1996; 57 Suppl. 1:20–3

    PubMed  CAS  Google Scholar 

  89. Dursun SM, Mathew VM, Reveley MA, et al. Toxic serotonin syndrome after fluoxetine plus carbamazepine. Lancet 1993; 342: 442–3

    PubMed  CAS  Google Scholar 

  90. Spina E, Ayenoso A, Pollicino AM, et al. No effect of fluvoxamine or fluoxetine on plasma concentrations of carbamazepine in epileptic patients. Pharmacol Res 1992; 25: 214–5

    Google Scholar 

  91. Sovner R, Davis JM. A potential drug interaction between fluoxetine and valproic acid [letter]. J Clin Psychopharmacol 1991; 11:389

    PubMed  CAS  Google Scholar 

  92. Droulers A, Bodak N, Oudjhani M, et al. Decrease of valproic acid concentration in the blood when coprescribed with fluoxetine. J Clin Psychopharmacol 1997; 17: 139–40

    PubMed  CAS  Google Scholar 

  93. Jerling M, Lindstrom L, Bondesson U, et al. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit 1994; 16: 368–74

    PubMed  CAS  Google Scholar 

  94. Tate JL. Extrapyramidal symptoms in a patient taking haloperidol and fluoxetine. Am J Psychiatry 1989; 146: 399–400

    PubMed  CAS  Google Scholar 

  95. Bouchard RH, Pourcher E, Vincent P. Fluoxetine and extrapyramidal side effects. Am J Psychiatry 1989; 146: 1352–3

    Google Scholar 

  96. Goff DC, Midha KK, Brotman AW, et al. Elevation of plasma concentrations of haloperidol after the addition of fluoxetine. Am J Psychiatry 1991; 148: 790–2

    PubMed  CAS  Google Scholar 

  97. Ahmed I, Dagincourt PG, Miller LG, et al. Possible interaction between fluoxetine and pimozide causing sinus bradycardia. Can J Psychiatry 1993; 38: 62–3

    PubMed  CAS  Google Scholar 

  98. Daniel DG, Randolph C, Jaskiw G, et al. Coadministration of fluvoxamine increases serum concentrations of haloperidol. J Clin Psychopharmacol 1994; 14: 340–3

    PubMed  CAS  Google Scholar 

  99. Wagner W, Vause EW. Fluvoxamine: a review of global drug-drug interaction data. Clin Pharmacokinet 1995; 29: 26–32

    PubMed  CAS  Google Scholar 

  100. Hiemke C, Weigmann H, Hartter S, et al. Elevated levels of clozapine in serum after addition of fluvoxamine. J Clin Psychopharmacol 1994; 14: 279–81

    PubMed  CAS  Google Scholar 

  101. Dumortier G, Lochu A, De Melo PC, et al. Elevated clozapine plasma concentrations after fluvoxamine initiation. Am J Psychiatry 1996; 153: 738–9

    PubMed  CAS  Google Scholar 

  102. Centorrino F, Baldessarini RJ, Kando J, et al. Serum concentrations of clozapine and its major metabolites: effects of cotreatment with fluoxetine or valproate. Am J Psychiatry 1994; 511: 123–5

    Google Scholar 

  103. Centorrino F, Baldessarini RJ, Frankenburg FR, et al. Serum levels of clozapine and norclozapine in patients treated with selective serotonin reuptake inhibitors. Am J Psychiatry 1996; 153: 820–2

    PubMed  CAS  Google Scholar 

  104. Stevens I, Gaertner MJ. Plasma level measurement in a patient with clozapine intoxication. J Clin Psychopharmacol 1996; 16: 86–7

    PubMed  CAS  Google Scholar 

  105. Szegedi A, Wiesner J, Hiemke C. Improved efficacy and fewer side effects under clozapine treatment after addition of fluvoxamine. J Clin Psychopharmacol 1995; 15: 141–3

    PubMed  CAS  Google Scholar 

  106. Slaughter RL, Edwards DJ. Recent advances: the cytochrome P450 enzymes. Ann Pharmacother 1995; 29: 619–24

    PubMed  CAS  Google Scholar 

  107. Ford MA, Anderson ML, Rindone JP, et al. Lack of effect of fluoxetine on the hypoprothrombinemic response to warfarin. J Clin Psychopharmacol 1997; 17: 110–2

    PubMed  CAS  Google Scholar 

  108. Woolfrey S, Gammack NS, Dewar MS, et al. Fluoxetine-war-farin interaction [letter]. BMJ 1993; 307: 241

    PubMed  CAS  Google Scholar 

  109. Hanger HC, Thomas F. Fluoxetine and wafarin interactions [letter]. NZ Med J 1995; 108: 157

    CAS  Google Scholar 

  110. Benfield P, Ward A. Fluvoxamine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in depressive illness. Drugs 1986: 32: 313–34

    PubMed  CAS  Google Scholar 

  111. Apseloff G, Wilner KD, Gerber N, et al. Effect of sertraline on protein binding of warfarin. Clin Pharmacokinet 1997; 32: Suppl. 1:37–42

    PubMed  CAS  Google Scholar 

  112. Sperber AD. Toxic interaction between fluvoxamine and sustained release theophylline in an 11-year-old boy. Drug Saf 1991; 6: 460–2

    PubMed  CAS  Google Scholar 

  113. Thomson AH, McGovern EM, Benne P, et al. Interaction between fluvoxamine and theophylline [abstract]. J Pharmacol 1992; 1: 137

    Google Scholar 

  114. Van Harten J. Clinical pharmacokinetics of selective serotonin reuptake inhibitors. Clin Pharmacokinet 1993; 24: 203–20

    PubMed  Google Scholar 

  115. Rasmussen BB, Jeppesen U, Gaist D. Griseofulvin and fluvoxamine interactions with the metabolism of theophylline. Ther Drug Monit 1997; 19: 56–62

    PubMed  CAS  Google Scholar 

  116. Yun C, Okerholm RA, Gugengerich FP. Oxidation of the antihistaminic drug terfenadine in human liver microsomes: role of cytochrome P-450 3A(4) in N-dealkylation and C-hydrox-ylation. Drug Metab Dispos Biol Fate Chem 1992; 21: 403–9

    Google Scholar 

  117. Honig PK, Wortham DC, Zamani K, et al. Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences. JAMA 1993; 269: 1513–18

    PubMed  CAS  Google Scholar 

  118. Swims MP. Potential terfenadine-fluoxetine interaction. Ann Pharmacotherapy 1993; 27: 1404–5

    CAS  Google Scholar 

  119. Marchiando RJ, Cook MD. Probable terfenadine-fluoxetine-as-sociated cardiac toxicity. Ann Pharmacother 1995; 29: 937–8

    PubMed  CAS  Google Scholar 

  120. Bertschy G, Baumann P, Eap CB, et al. Probable metabolic interaction between methadone and fluvoxamine in addict patients. Ther Drug Monit 1994; 16: 42–5

    PubMed  CAS  Google Scholar 

  121. Bertschy G, Eap CB, Powell K, et al. Fluoxetine addition to methadone in addicts: pharmacokinetic aspects. Ther Drug Monit 1996; 18: 570–2

    PubMed  CAS  Google Scholar 

  122. Eap G, Bertschy G, Powell K. Fluvoxamine and fluoxetine do not interact in the same way with the metabolism of the enantiomers of methadone. J Clin Psychopharmacol 1997; 17: 113–17

    PubMed  CAS  Google Scholar 

  123. Pollack FT, Sketris IS, MacKenzie SL, et al. Delirium probably induced by clarithromycin in a patient receiving fluoxetine. Ann Pharmacother 1995; 29: 486–8

    Google Scholar 

  124. Walley T, Pirmohamed M, Proudlove C, et al. Interaction of metoprolol and fluoxetine. Lancet 1993; 341: 967–8

    PubMed  CAS  Google Scholar 

  125. Artigas F, Perez V, Alvarez E. Pindolol induces a rapid improvement of depressed patients treated with serotonin reuptake inhibitors. Arch Gen Psychiatry 1994; 51: 248–51

    PubMed  CAS  Google Scholar 

  126. Perez V, Gilaberte I, Faries D, et al. Randomised, doubleblind, placebo-controlled trial of pindolol in combination with fluoxetine antidepressant treatment. Lancet 1997; 349: 1594–7

    PubMed  CAS  Google Scholar 

  127. Sternbach H. Fluoxetine-associated potentiation of calciumchannel blockers. J Clin Psychopharmacol 1991; 11: 390–1

    PubMed  CAS  Google Scholar 

  128. Sternbach H. The serotonin syndrome. Am J Psychiatry 1991; 148:705–13

    PubMed  CAS  Google Scholar 

  129. Sternbach H. Danger of MAOI therapy after fluoxetine withdrawal. Lancet 1988; II: 850

    Google Scholar 

  130. Feighner JP, Boyer WF, Tyler DL, et al. Adverse consequences of fluoxetine-MAOI combination therapy. J Clin Psychiatry 1990; 51: 222–5

    PubMed  CAS  Google Scholar 

  131. Beasley CM, Masica DN, Heiligenstein JH, et al. Possible monoamine oxidase inhibitor-serotonin uptake inhibitor interaction: fluoxetine clinical data and preclinical findings. J Clin Psychopharmacol 1993; 13: 312–20

    PubMed  Google Scholar 

  132. Coplan JD, Gorman JM. Detectable levels of fluoxetine metabolites after discontinuation: an unexpected serotonin syndrome [letter]. Am J Psychiatry 1993; 150: 837

    PubMed  CAS  Google Scholar 

  133. Bhatara VS, Bandettini FC. Possible interaction between sertraline and tranylcypromine. Clin Pharm 1993; 12: 222–5

    PubMed  CAS  Google Scholar 

  134. Steiner W, Fontaine R. Toxic reaction following the combined administration of fluoxetine and 1-tryptophan: five case reports. Biol Psychiatry 1986; 21: 1067–71

    PubMed  CAS  Google Scholar 

  135. DeMontigny CF, Ceurnoyer G, Morissette R. Lithium carbonate addition in tricyclic antidepressant-resistant unipolar depression. Arch Gen Psychiatry 1983; 40: 1327–34

    CAS  Google Scholar 

  136. Salama AA, Shafey M. A case of severe lithium toxicity induced by combined fluoxetine and lithium carbonate [letter]. Am J Psychiatry 1989; 146: 278

    PubMed  CAS  Google Scholar 

  137. Breuel HP, Mulleroerlinghausen B, Nickelsen T, et al. Pharmacokinetic interactions between lithium and fluoxetine after single and repeated fluoxetine administration in young healthy volunteers. Int J Clin Pharmacol Ther 1995; 33:415–9

    PubMed  CAS  Google Scholar 

  138. Baumann P, Souche A, Montaldi S, et al. A double-blind, placebo-controlled study of citalopram with and without lithium in the treatment of therapy-resistant depressive patients: a clinical, pharmacokinetic, and pharmacogenetic investigation. J Clin Psychopharmacol 1996; 16: 307–14

    PubMed  CAS  Google Scholar 

  139. Noveske FG, Hahn KR, Flynn RJ, et al. Possible toxicity of combined fluoxetine and lithium [letter]. Am J Psychiatry 1989; 146: 1515

    PubMed  CAS  Google Scholar 

  140. Austin LS, Arana GW, Meivin JA, et al. Toxicity resulting from lithium augmentation of antidepressant treatment in elderly patients. J Clin Psychiatry 1990; 51: 344–5

    PubMed  CAS  Google Scholar 

  141. Muly EC, McDonald W, Steffens D, et al. Serotonin syndrome produced by a combination of fluoxetine and lithium [letter]. Am J Psychiatry 1993; 150: 1565

    PubMed  CAS  Google Scholar 

  142. Oehman R, Spigset O. Serotonin syndrome induced by fluovoxamine-lithium interaction. Pharmacopsychiatry 1993; 26: 263–4

    Google Scholar 

  143. Fava M, Rosenbaum JF, McGrath PJ, et al. Lithium and tricyclic augmentation of fluoxetine treatment for resistant major depression: a double-blind, controlled study. Am J Psychiatry 1994; 151: 1372–4

    PubMed  CAS  Google Scholar 

  144. Katona CLE, Abou-Saleh MT, Harrison DA, et al. Placebo-controlled trial of lithium augmentation of fluoxetine and lofepramine. Br J Psychiatry 1995; 166: 80–6

    PubMed  CAS  Google Scholar 

  145. Ford MA, Anderson ML, Rindone JP, et al. Lack of effect of fluoxetine on the hypoprothrombinemic response of warfarin. J Clin Psychopharmacol 1997; 17: 110–2

    PubMed  CAS  Google Scholar 

  146. Dingemanse J. An update of recent moclobemide interaction data. Int Clin Psychopharmacol 1993; 7: 167–79

    PubMed  CAS  Google Scholar 

  147. Wallnofer A, Guentert TW, Eckernas SA, et al. Moclobemide and fluvoxamine coadministration: a prospective study in healthy volunteers to investigate the potential development of the serotonin syndrome. Hum Psychopharmacol 1995; 10: 25–31

    Google Scholar 

  148. Joffe RT, Bakish D. Combined SSRI-moclobemide treatment of psychiatric illness. J Clin Psychiatry 1994; 55: 24–5

    PubMed  CAS  Google Scholar 

  149. Neuvonen PJ, Pohjola-Sintonen S, Tacke U, et al. Five fatal cases of serotonin syndrome after moclobemide-citalopram or moclobemide-clomipramine overdoses [letter]. Lancet 1993; II: 1419

    Google Scholar 

  150. Hernandez AF, Montero MN, Pla A, et al. Fatal moclobemide overdose or death caused by serotonin syndrome? J Forensic Sci 1994; 128–30

  151. Spigset O, Mjorndal T, Lovheim O. Serotonin syndrome caused by moclobemide-clomipramine interaction [letter]. BMJ 1993; 306: 248

    PubMed  CAS  Google Scholar 

  152. Benazzi F. Serotonin syndrome with moclobemide-fluoxetine combination [letter]. Pharmacopsychiatry 1996; 29: 162

    PubMed  CAS  Google Scholar 

  153. Myrenfors PG, Eriksson T, Sandsted CS, et al. Moclobemide overdose. J Int Med 1993; 323: 113–7

    Google Scholar 

  154. Hawley CJ, Ratnam S, Pattinson HA, et al. Safety and tolerability of combined treatment with moclobemide and SSRIs: a preliminary study of 19 patients. J Psychopharmacol 1996a; 10: 241–5

    PubMed  CAS  Google Scholar 

  155. Hawley CJ, Quick SJ, Ratnam S, et al. Safety and tolerability of combined treatment with moclobemide and SSRIs: a systematic study of 50 patients. Int Clin Psychopharmacol 1996b; 11: 187–91

    PubMed  CAS  Google Scholar 

  156. Suchowersky O, de Vries JD. Interaction of fluoxetine and selegiline [letter]. Can J Psychiatry 1990; 35: 571–2

    PubMed  CAS  Google Scholar 

  157. Waters CH. Fluoxetine and selegiline — lack of significant interaction. Can J Neurol Sci 1994; 21: 259–61

    PubMed  CAS  Google Scholar 

  158. Leung M, Ong M. Lack of an interaction between sumatriptan and selective serotonin reuptake inhibitors. Headache 1995; 35: 488–9

    PubMed  CAS  Google Scholar 

  159. Blier P, Bergeron R. The safety of concomitant use of sumatriptan and antidepressant treatments. J Clin Psychopharmacol 1995; 15: 106–9

    PubMed  CAS  Google Scholar 

  160. Mason BJ, Blackburn KH. Possible serotonin syndrome associated with tramadol and sertraline coadministration. Ann Psychother 1997; 31: 175–7

    CAS  Google Scholar 

  161. Skop BP, Finkelstein JA, Mareth TR, et al. The serotonin syndrome associated with paroxetine, an over-the-counter cold remedy, and vascular disease. Am J Emerg Med 1994; 12: 643–4

    Google Scholar 

  162. Bostwick JM, Brown TM. A toxic reaction from combining fluoxetine and phentermine. J Clin Pharmacol 1996; 16: 189–90

    CAS  Google Scholar 

  163. Nelson JC, Mazure CM, Bowers MB, et al. A preliminary, open study of the combination of fluoxetine and desipramine for rapid treatment of major depression. Arch Gen Psychiatry 1991; 48: 303–7

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip B. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, P.B. Drug Interactions of Clinical Significance with Selective Serotonin Reuptake Inhibitors. Drug-Safety 17, 390–406 (1997). https://doi.org/10.2165/00002018-199717060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199717060-00005

Keywords

Navigation