Assessment of the ion-trap mass spectrometer for routine qualitative and quantitative analysis of drugs of abuse extracted from urine

J Anal Toxicol. 2000 Oct;24(7):595-601. doi: 10.1093/jat/24.7.595.

Abstract

The ion-trap mass spectrometer (MS) has been available as a detector for gas chromatography (GC) for nearly two decades. However, it still occupies a minor role in forensic toxicology drug-testing laboratories. Quadrupole MS instruments make up the majority of GC detectors used in drug confirmation. This work addresses the use of these two MS detectors, comparing the ion ratio precision and quantitative accuracy for the analysis of different classes of abused drugs extracted from urine. Urine specimens were prepared at five concentrations each for amphetamine (AMP), methamphetamine (METH), benzoylecgonine (BZE), delta9-carboxy-tetrahydrocannabinol (delta9-THCCOOH), phencyclidine (PCP), morphine (MOR), codeine (COD), and 6-acetylmorphine (6-AM). Concentration ranges for AMP, METH, BZE, delta9-THCCOOH, PCP, MOR, COD, and 6-AM were 50-2500, 50-5000, 15-800, 1.5-65, 1-250, 500-32000, 250-21000, and 1.5-118 ng/mL, respectively. Sample extracts were injected into a GC-quadrupole MS operating in selected ion monitoring (SIM) mode and a GC-ion-trap MS operating in either selected ion storage (SIS) or full scan (FS) mode. Precision was assessed by the evaluation of five ion ratios for n = 15 injections at each concentration using a single-point calibration. Precision measurements for SIM ion ratios provided coefficients of variation (CV) between 2.6 and 9.8% for all drugs. By comparison, the SIS and FS data yielded CV ranges of 4.0-12.8% and 4.0-11.2%, respectively. The total ion ratio failure rates were 0.2% (SIM), 0.7% (SIS), and 1.2% (FS) for the eight drugs analyzed. Overall, the SIS mode produced stable, comparable mean ratios over the concentration ranges examined, but had greater variance within batch runs. Examination of postmortem and quality-control samples produced forensically accurate quantitation by SIS when compared to SIM. Furthermore, sensitivity of FS was equivalent to SIM for all compounds examined except for 6-AM.

Publication types

  • Comparative Study
  • Evaluation Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gas Chromatography-Mass Spectrometry / methods*
  • Humans
  • Illicit Drugs / urine*
  • Reproducibility of Results
  • Substance Abuse Detection / methods*
  • Substance-Related Disorders / urine*

Substances

  • Illicit Drugs